[1] Zhou Botao. Global warming: Scientific progress from AR5 to AR6 [J]. Transactions of Atmospheric Sciences, 2021, 44(5): 667-671. doi:  10.13878/j.cnki.dqkxxb.20210815009
[2] Mao Xianqiang, Xing Youkai, Gao Yubing, et al. Study on GHGs and air pollutants co-control: Assessment and planning [J]. China Environmental Science, 2021, 41(7): 3390-3398. doi:  10.19674/j.cnki.issn1000-6923.2021.0316
[3] Chen Yidan, Cai Wenjia, Wang Can. The characteristics of intended nationally determined contributions [J]. Climate Change Research, 2018, 14(3): 295-302. doi:  10.12006/j.issn.1673-1719.2017.124
[4] Belbute J M, Pereira A M. Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal [J]. Energy Policy, 2020, 144(9): 111642. doi:  10.1016/j.enpol.2020.111642
[5] Grégoire B, Franois-Marie B, Emmanuel R, et al. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities [J]. Atmospheric Measurement Techniques, 2018, 11(2): 681-708. doi:  10.5194/amt-11-681-2018
[6] Englert C R, Stevens M H, Siskind D E, et al. Spatial heterodyne imager for mesospheric radicals on STPSat-1 [J]. Journal of Geophysical Research: Atmospheres, 2010: 115 (D20): D20306. doi:  10.1029/2010JD014398
[7] Gorinov D A, Zasova L V, Khatuntsev I V, et al. Winds in the lower cloud level on the nightside of venus from VIRTIS-M (Venus Express) 1.74 μm images [J]. Atmosphere, 2021, 12(2): 186. doi:  10.3390/atmos12020186
[8] Xu Biao. The research of offner imaging system used in spatial heterodyne spectrometer[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese)
[9] Liu Yujuan. The study on newly imaging spectrometers based on concentric optics[D]. Beijing: University of Chinese Academy of Sciences, 2012. (in Chinese)
[10] Nicholas T, Curtiss O D, Tim V, et al. Behavioral model and simulator for the Multi-slit Optimized Spectrometer (MOS): Imaging spectrometry XVIII[C]//Proc of SPIE, 2013.
[11] Ji Yiqun, Shen Weimin. Design and manufacture of Offner convex grating hyper-spectral imager [J]. Infrared and Laser Engineering, 2010, 39(2): 285-287. (in Chinese) doi:  10.3969/j.issn.1007-2276.2010.02.020
[12] 陈新华, 赵知诚, 周正平, 等. 基于内拼接法的宽视场成像光谱仪研制[J]. 应用光学, 2016, 37(4): 495-502. doi: 10.5768/JAO201637.0401001

Chen Xinhua, Zhao Zhicheng, Zhou Zhengping, et al. Development of wide field-of-view imaging spectrometer using inner-stitching [J]. Journal of Applied Optics, 2016, 37(4): 495-502. (in Chinese) doi:  10.5768/JAO201637.0401001
[13] Cao Yanan. The study of 3.5 μm mid-infrared laser heterodyne spectroscopy technology and system[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese)
[14] Yu Lei. Development and application of imaging spectrometer [J]. Infrared and Laser Engineering, 2022, 51(1): 20210940. (in Chinese) doi:  10.3788/IRLA20210940
[15] 朱雨霁, 尹达一, 魏传新, 等. 双狭缝高分辨率紫外成像光谱仪光学系统设计[J]. 半导体光电, 2018, 4: 549-553. doi: 10.16818/j.issn1001-5868.2018.04.020

Zhu Yuji, Yin Dayi, Wei Chuanxin, et al. Design of hyperspectral resolution ultraviolet double-slit spectrometer system [J]. Semiconductor Optoelectronics, 2018, 39(4): 549-553. (in Chinese) doi:  10.16818/j.issn1001-5868.2018.04.020
[16] 刘智颖, 高柳絮, 黄蕴涵. offner型连续变焦中波红外光谱成像系统设计[J]. 红外与激光工程, 2019, 48(7): 718003-0718003(9). doi: 10.3788/IRLA201948.0718003

Liu Zhiying, Gao Liuxu, Huang Yunhan. Design of continuous zoom medium-wave infrared spectral imaging system based on offner scheme [J]. Infrared and Laser Engineering, 2019, 48(7): 0718003. (in Chinese) doi:  10.3788/IRLA201948.0718003
[17] Prieto-Blanco X, Montero-Orille C, Couce B, et al. Analytical design of an Offner imaging spectrometer [J]. Optics Express, 2006, 14(20): 9156-9168. doi:  10.1364/OE.14.009156
[18] Sun Yunzhu, Jiang Guangwei, Li Yunduan, et al. Hyper-spectral observation satellite and it's application prospects [J]. Aerospace Shanghai, 2017, 34(3): 13. doi:  10.19328/j.cnki.1006-1630.2017.03.001
[19] Zhao Zhe, Ding Lei. Design of high spectral resolution and wide swath spectrometer for greenhouse gas detection [J]. Infrared, 2017, 38(7): 10.