[1] Stephen W. New technologies for FPA Dewars[C]//SPIE, 1992, 1683: 102-111.
[2] Amiram Katz, Victor Segal, Avishai Filis, et al. RICOR’s Cryocoolers development and optimization for HOT IR detectors[C]//SPIE, 2014, 9070: 90702N.
[3] Xavier Breniere, Philippe Tribolet. IR detectors life cycle cost and reliability optimization for tactical applications[C]//SPIE, 2006, 6395: 6395D.
[4] Rutter Jr James H, Robillard Gene, Robinson Charles, et al. Performance of the multispectral photoconductive HgCdTe focal plane/Dewar assembly for the high-resolution dynamics limb sounder (HIRDLS) instrument[C]//SPIE, 2000, 4131: 285-296.
[5] Reid R J. Cleaning for vacuum service[C]//Proc Cern Accel Sch, Snekersten, 1999, 5: 139-154.
[6] Veprik A. Shlomovich B. Multi-slope warm-up calorimetry of integrated Dewar-detector assemblies[C]//SPIE, 2005, 9451.
[7] Feng Yan, Dong Meng, Li Detian, et al. Study on vacuum materials outgassing rate using the method of switching between two pumping paths [J]. MAPAN, 2014, 29(4): 229-234. doi:  10.1007/s12647-014-0105-1
[8] Elsey R J. Outgassing of vacuum materials-II [J]. Vacuum, 1975, 25(8): 347-361. doi:  10.1016/0042-207X(75)91653-X
[9] Kwon J S, Jung H, Yeo I S, et al. Outgassing characteristics of a polycarbonate core material for vacuum insulation panels [J]. Vacuum, 2011, 85(8): 839-846. doi:  10.1016/j.vacuum.2010.12.009
[10] Ishikawa Yuichi, Koguchi Yuko, Odaka Kenji. Outgassing rate of some austenitic stainless steels [J]. Journal of Vacuum Science & Technology A, 1991, 9(2): 250-253. doi:  https://doi.org/10.1116/1.577529
[11] Redhead P A. Effects of readsorption on outgassing rate measurements [J]. Journal of Vacuum Science & Technology A, 1996, 14(4): 432-436. doi:  https://doi.org/10.1116/1.579987
[12] Chun Inkyu, Cho Boklae, Chung Sukmin, et al. Outgassing rate characteristic of a stainless-steel extreme high vacuum system [J]. Journal of Vacuum Science & Technology A, 1996, 14(4): 2636-2640. doi:  https://doi.org/10.1116/1.579992
[13] Nemani V, Setina J. A study of thermal treatment procedures to reduce hydrogen outgassing rate in thin wall stainless steel cells [J]. Vacuum, 1999, 53(1-2): 277-280. doi:  10.1016/S0042-207X(98)00363-7
[14] Terada Keiko, Okano Tatsuo. Conductance modulation method for the measurement of the pumping speed and outgassing rate of pumps in ultrahigh vacuum [J]. Journal of Vacuum Science & Technology A, 1989, 7(3): 2397-2402. doi:  https://doi.org/10.1116/1.575907
[15] Stutzman M L , Adderley P , Poelker B M , et al. A comparison of outgassing measurements for three vacuum chamber materials[C]//AIP Proceedings, US, 2003: 300.
[16] Li Minxu, Dylla H F. Reduction of outgassing rate by glow discharge cleaning [J]. Journal of Vacuum Science & Technology A, 1995, 13(3): 571-575. doi:  https://doi.org/10.1116/1.579787
[17] Koyatsu Y, Miki H, Watanabe F. Measurements of outgassing rate from copper and copper alloy chambers [J]. Vacuum, 1996, 47(6-8): 709-711. doi:  10.1016/0042-207X(96)00053-X
[18] Benvenuti C, Cazeneuve J M, Chiggiato P, et al. Reduction of rate by glow discharge cleaning [J]. Vacuum, 1999, 53(1-2): 219-225.
[19] Ishikawa Yuichi, Odaka Kenji. Reduction of outgassing from stainless surfaces by surface oxidation [J]. Vacuum, 1990, 41(7-9): 1995-1997. doi:  10.1016/0042-207X(90)94155-J
[20] Watanabe Shu, Aono Masakazu. Reduction of outgassing rate from residual gas analyzers for extreme high vacuum measurements [J]. Journal of Vacuum Science & Technology A, 1996, 14(6): 3261-3266.
[21] Saitoh M, Shimura K, Iwata T, et al. Influence of vacuum gauges on outgassing rate measurements [J]. Journal of Vacuum Science & Technology A, 1983, 11(5): 2816-2821.
[22] Bennett J R J, Hughes S, Elsey R J, et al. Outgassing from stainless steel and the effects of the gauges [J]. Vacuum, 2004, 73(2): 149-153. doi:  10.1016/j.vacuum.2003.12.012
[23] Battes K, Day C, Hauer V. Outgassing rate measurements of stainless steel and polymers using the difference method [J]. Journal of Vacuum Science & Technology A, 2015, 33(2): 021603.
[24] Garke B, Edelmann C, Ehrt M. The influence of a glow discharge treatment on surface modification and outgassing rate of stainless steel and titanium alloys [J]. Vacuum, 1996, 47(4): 383-390. doi:  10.1016/0042-207X(95)00255-3