[1] Harding K. Industrial metrology: engineering precision [J]. Nature Photonics, 2008, 2(11): 667. doi:  10.1038/nphoton.2008.218
[2] Luhmann T. Close range photogrammetry for industrial applications [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(6): 558−569. doi:  10.1016/j.isprsjprs.2010.06.003
[3] Ma Y, Soatto S, Koseck J, et al. An Invitation to 3-D Vision: from Images to Geometric Models[M]. New York: Springer Science & Business Media, 2012, 26.
[4] Jiang H, Zhao H, Li X. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces [J]. Optics and Lasers in Engineering, 2012, 50(10): 1484−1493. doi:  10.1016/j.optlaseng.2011.11.021
[5] Salvi J, Fernandez S, Pribanic T, et al. A state of the art in structured light patterns for surface profilometry [J]. Pattern Recognition, 2010, 43(8): 2666−2680. doi:  10.1016/j.patcog.2010.03.004
[6] Feng S, Zuo C, Tao T, et al. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry [J]. Optics and Lasers in Engineering, 2018, 103: 127−138.
[7] Zhang Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques [J]. Optics and Lasers in Engineering, 2012, 50(8): 1097−1106. doi:  10.1016/j.optlaseng.2012.01.007
[8] Su X, Zhang Q. Dynamic 3-D shape measurement method: a review [J]. Optics and Lasers in Engineering, 2010, 48(2): 191−204. doi:  10.1016/j.optlaseng.2009.03.012
[9] Wang Y, Liu Z, Jiang C, et al. Motion induced phase error reduction using a Hilbert transform [J]. Optics Express, 2018, 26(26): 34224. doi:  10.1364/OE.26.034224
[10] Feng S, Chen Q, Zuo C, et al. Fast three-dimensional measurements for dynamic scenes with shiny surfaces [J]. Optics Communications, 2017, 382: 18−27. doi:  10.1016/j.optcom.2016.07.057
[11] Heist S, Lutzke P, Schmidt I, et al. High-speed three-dimensional shape measurement using GOBO projection [J]. Optics and Lasers in Engineering, 2016, 87: 90−96. doi:  10.1016/j.optlaseng.2016.02.017
[12] Borowiec S. AlphaGo seals 4-1 victory over Go grandmaster Lee Sedol [J]. The Guardian, 2016: 15.
[13] ZˇBONTAR J, Lecun Y. Stereo matching by training a convolutional neural network to compare image patches[J]. The Journal of Machine Learning Research, 2016, 17(1): 2287-2318.
[14] Luo W, Schwing A G, Urtasun R. Efficient deep learning for stereo matching[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 5695−5703.
[15] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. arXiv: 1711.06810[physics], 2017.
[16] Moriya T, Roth H R, Nakamura S, et al. Unsupervised segmentation of 3D medical images based on clustering and deep representation learning[J]. arXiv: 1804.03830[cs], 2018: 71.
[17] Li H, Wei T, Ren A, et al. Deep reinforcement learning: framework, applications, and embedded implementations[J]. arXiv: 1710.03792[cs], 2017.
[18] Kuznietsov Y, Stuckler J, Leibe B. Semi-supervised deep learning for monocular depth map prediction[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, 2017: 2215-2223.
[19] Kendall A, Grimes M, Cipolla R. PoseNet: A convolutional network for real-time 6-DOF camera relocalization[C]//2015 IEEE International Conference on Computer Vision (ICCV), 2015: 2938−2946.
[20] Wang H, Rivenson Y, Jin Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy [J]. Nature Methods, 2019, 16(1): 103−110. doi:  10.1038/s41592-018-0239-0
[21] Rivenson Y, Zhang Y, GÜNAYDIN H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks [J]. Light: Science & Applications, 2018, 7(2): 17141.
[22] Nguyen T, Xue Y, Li Y, et al. Deep learning approach for Fourier ptychography microscopy [J]. Optics Express, 2018, 26(20): 26470. doi:  10.1364/OE.26.026470
[23] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media [J]. Optics Express, 2016, 24(13): 13738. doi:  10.1364/OE.24.013738
[24] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging [J]. Scientific Reports, 2017, 7(1): 17865. doi:  10.1038/s41598-017-18171-7
[25] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning [J]. Optica, 2018, 5(4): 458−464. doi:  10.1364/OPTICA.5.000458
[26] Fang L, Cunefar D, Wang C, et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search [J]. Biomedical Optics Express, 2017, 8(5): 2732−2744. doi:  10.1364/BOE.8.002732
[27] Li Y, Xue Y, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media [J]. Optica, 2018, 5(10): 1181−1190. doi:  10.1364/OPTICA.5.001181
[28] Zhang S, Huang P S. Novel method for structured light system calibration [J]. Optical Engineering, 2006, 45(8): 083601. doi:  10.1117/1.2336196
[29] Yin Y, Peng X, Li A, et al. Calibration of fringe projection profilometry with bundle adjustment strategy [J]. Optics Letters, 2012, 37(4): 542−544. doi:  10.1364/OL.37.000542
[30] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes [J]. Applied Optics, 1983, 22(24): 3977−3982. doi:  10.1364/AO.22.003977
[31] Zuo C, Feng S, Huang L, et al. Phase shifting algorithms for fringe projection profilometry: A review [J]. Optics and Lasers in Engineering, 2018, 109: 23−59. doi:  10.1016/j.optlaseng.2018.04.019
[32] Malacara D. Optical Shop Testing[M]. Hoboken, New Jersey: John Wiley & Sons, 2007, 59.
[33] Hoang T, Pan B, Nguyen D, et al. Generic gamma correction for accuracy enhancement in fringe-projection profilometry [J]. Optics Letters, 2010, 35(12): 1992−1994. doi:  10.1364/OL.35.001992
[34] Feng S, Zhang L, Zuo C, et al. High dynamic range 3D measurements with fringe projection profilometry: a review [J]. Measurement Science and Technology, 2018, 29(12): 122001. doi:  10.1088/1361-6501/aae4fb
[35] Su X, Chen W. Reliability-guided phase unwrapping algorithm: a review [J]. Optics and Lasers in Engineering, 2004, 42(3): 245−261. doi:  10.1016/j.optlaseng.2003.11.002
[36] Zuo C, Huang L, Zhang M, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review [J]. Optics and Lasers in Engineering, 2016, 85: 84−103. doi:  10.1016/j.optlaseng.2016.04.022
[37] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]. Cambridge: Cambridge University Press, 2004: 673.
[38] Kemao Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations [J]. Optics and Lasers in Engineering, 2007, 45(2): 304−317. doi:  10.1016/j.optlaseng.2005.10.012
[39] Zhong J, Weng J. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry [J]. Applied Optics, 2004, 43(26): 4993−4998. doi:  10.1364/AO.43.004993
[40] Feng S, Chen Q, Gu G, et al. Fringe pattern analysis using deep learning [J]. Advanced Photonics, 2019, 1(2): 1.
[41] Shi J, Zhu X, Wang H, et al. Label enhanced and patch based deep learning for phase retrieval from single frame fringe pattern in fringe projection 3D measurement [J]. Optics Express, 2019, 27(20): 28929. doi:  10.1364/OE.27.028929
[42] Yan K, Yu Y, Hu C, et al. Fringe pattern denoising based on deep learning [J]. Optics Communications, 2019, 437: 148−152. doi:  10.1016/j.optcom.2018.12.058
[43] Spoorthi G E, Gorthi S, Gorthi R K S S. PhaseNet: A deep convolutional neural network for two-dimensional phase unwrapping [J]. IEEE Signal Processing Letters, 2019, 26(1): 54−58. doi:  10.1109/LSP.2018.2879184
[44] Wang K, Li Y, Kemao Q, et al. One-step robust deep learning phase unwrapping [J]. Optics Express, 2019, 27(10): 15100. doi:  10.1364/OE.27.015100
[45] Yin W, Chen Q, Feng S, et al. Temporal phase unwrapping using deep learning [J]. Scientific Reports, 2019, 9(1): 20175. doi:  10.1038/s41598-019-56222-3
[46] Van Der Jeught S, Dirckx J J J. Deep neural networks for single shot structured light profilometry [J]. Optics Express, 2019, 27(12): 17091. doi:  10.1364/OE.27.017091
[47] Lv S, Sun Q, Zhang Y, et al. Projector distortion correction in 3D shape measurement using a structured-light system by deep neural networks [J]. Optics Letters, 2020, 45(1): 204−207. doi:  10.1364/OL.45.000204
[48] Zuo C, Tao T, Feng S, et al. Micro Fourier Transform Profilometry (μ FTP): 3D shape measurement at 10,000 frames per second [J]. Optics and Lasers in Engineering, 2018, 102: 70−91. doi:  10.1016/j.optlaseng.2017.10.013
[49] Feng S, Zuo C, Yin W, et al. Micro deep learning profilometry for high-speed 3D surface imaging [J]. Optics and Lasers in Engineering, 2019, 121: 416−427. doi:  10.1016/j.optlaseng.2019.04.020
[50] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[J]. arXiv: 1311.2901[cs], 2013.
[51] Bergstra J, Bengio Y. Random search for hyper-parameter optimization [J]. Journal of Machine Learning Research, 2012, 13(2): 281−305.
[52] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017: 1126−1135.
[53] Zoph B, Le Q V. Neural architecture search with reinforcement learning[J]. arXiv preprint arXiv: 1611.01578, 2016.
[54] Tan C, Sun F, Kong T, et al. A survey on deep transfer learning[C]//International Conference on Artificial Neural Networks, 2018: 270−279.