[1] Kaula W, Schubert G, Lingenfelter R, et al. Apollo laser altimetry and inferences as to lunar structure[C]// Proceedings of the Lunar and Planetary Science Conference Proceedings, F, 1974.
[2] Mcclung F, Hellwarth R. Giant optical pulsations from ruby [J]. J Appl Phys, 1962, 33(3): 828-829. doi:  10.1063/1.1777174
[3] Sjogren W L, Wollenhaupt W R. Lunar shape via the Apollo laser altimeter [J]. Science, 1973, 179(4070): 275-278. doi:  10.1126/science.179.4070.275
[4] Wang X, Cheng X, Gong P, et al. Earth science applications of ICESat/GLAS: a review [J]. Int J Remote Sens, 2011, 32(23): 8837-8864. doi:  10.1080/01431161.2010.547533
[5] Smith D E, Zuber M T, Neumann G A, et al. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA) [J]. Geophys Res Lett, 2010, 37(18): 1-6.
[6] Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 Laser Altimetry Mission [J]. IEEE, 2010, 98(5): 735-751. doi:  10.1109/JPROC.2009.2034765
[7] Martino A J, Neumann T A, Kurtz N T, et al. ICESat-2 mission overview and early performance[C]//Sensors, Systems, and Next-Generation Satellites XXIII. 2019.
[8] Kwok R, Cunningham G F, Wensnahan M, et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008 [J]. J Geophys Res, 2009, 114(C7): 1-16.
[9] Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance [J]. Remote Sens, 2019, 11(14): 1-19.
[10] 王建宇, 舒嵘, 陈卫标, 等. 嫦娥一号卫星载激光高度计[J]. 中国科学: 物理学 力学 天文学, 2010, 40(8): 1063-1070.
[11] 宋博, 李旭, 郑伟, 等. 资源三号(02)星载高精度激光测距技术的实现[J]. 光电子技术, 2017, 37(1): 61-65.

Song Bo, Li Xu, Zheng Wei, et al. The implementation of high precision space-bornelaser ranging technology in ZY-3(02) satellite [J]. Optoelectronic Technology, 2017, 37(1): 61-65. (in Chinese
[12] 李国元, 唐新明. 资源三号02星激光测高精度分析与验证[J]. 测绘学报, 2017, 46(12): 1939-1948. doi:  10.11947/j.AGCS.2017.20170174

Li Guoyuan, Tang Xinming. Analysis and validation of ZY-3 02 satellite laser altimetry data [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(12): 1939-1948. (in Chinese doi:  10.11947/j.AGCS.2017.20170174
[13] Sun X, Abshire J B, Krainak M A, et al. HgCdTe avalanche photodiode array detectors with single photon sensitivity and integrated detector cooler assemblies for space lidar applications [J]. Opt Eng, 2019, 58(6): 1-10.
[14] Malkamäki T, Kaasalainen S, Ilinca J. Portable hyperspectral lidar utilizing 5 GHz multichannel full waveform digitization [J]. Opt Express, 2019, 27(8): A468-A480. doi:  10.1364/OE.27.00A468
[15] Juan Du J D, Yanguang Sun Y S, Dijun Chen D C, et al. Frequency-stabilized laser system at 1572 nm for space-borne CO2 detection LIDAR [J]. Chin Opt Lett, 2017, 15(3): 031401. doi:  10.3788/COL201715.031401
[16] 高则超, 王富国, 丁良, 等. 2m级SiC轻量化主镜的边缘切向剪切支撑设计与优化[J]. 科学技术与工程, 2018, 18(27): 130-134.

Gao Zechao, Wang Fuguo, Ding Liang, et al. Design and optimization of edge tangential shear support on 2 m SiC lightweight primary mirror [J]. Science Technology and Engineering, 2018, 18(27): 130-134. (in Chinese
[17] Zhang W, You L, Li H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature [J]. Science China Physics, Mechanics & Astronomy, 2017, 60(12): 1-10.