[1] Abbe E. Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung [J]. Archiv für Mikroskopische Anatomie, 1873, 9(1): 413-468.
[2] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782. doi:  10.1364/OL.19.000780
[3] Betzig E, Patterson G H, Sougratr, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 1642(313): 1127344. doi:  10.1126/science.1127344
[4] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198(2): 82-87. doi:  10.1046/j.1365-2818.2000.00710.x
[5] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature Materials, 2010(5S): 35-37. doi:  10.1038/35570
[6] Chen Zhigang, Allen T, Vadim B. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique [J]. Optics Express, 2004, 12(7): 1214-1220.
[7] Wang Z, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope [J]. Nature Communications, 2011, 2(1): 1-6.
[8] Perrin S, Li H, Lecler S, et al. Unconventional magnification behaviour in microsphere-assisted microscopy [J]. Optics & Laser Technology, 2019, 114: 40-43.
[9] Duan Y, Barbastathis G, Zhang B. Classical imaging theory of a microlens with super-resolution [J]. Optics Letters, 2013, 38(16): 2988-2990. doi:  10.1364/OL.38.002988
[10] Ben-Aryeh Y. Tunneling of evanescent waves into propagating waves [J]. Applied Physics B, 2006, 84(1/2): 121-124.
[11] Ben-Aryeh Y. Transmission enhancement by conversion of evanescent waves into propagating waves [J]. Applied Physics B, 2008, 91(1): 157-165. doi:  10.1007/s00340-008-2945-2
[12] Ben-Aryeh Y. Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films [J]. Applied Physics B, 2012, 109(1): 165-170. doi:  10.1007/s00340-012-5193-4
[13] Lukiyanchuk B S, Paniagua-Domínguez R, Minin I, et al. Refractive index less than two: photonic nanojets yesterday, today and tomorrow [J]. Optical Materials Express, 2017, 7(6): 1820-1847. doi:  10.1364/OME.7.001820
[14] Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet [J]. Nano Letters, 2016, 16(8): 4862-4870. doi:  10.1021/acs.nanolett.6b01255
[15] Devilez A, Stout B, Bonod N, et al. Spectral analysis of three-dimensional photonic jets [J]. Optics Express, 2008, 16(18): 14200-14212. doi:  10.1364/OE.16.014200
[16] Lee S, Li L, Wang Z. Optical resonances in microsphere photonic nanojets [J]. Journal of Optics, 2014, 16(1): 5704. doi:  10.1088/2040-8978/16/1/015704
[17] Yang H, Gijs M A M. Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures [J]. Microelectronic Engineering, 2015, 143: 86-90. doi:  10.1016/j.mee.2015.03.072
[18] Lecler S, Perrin S, Leong-Hoi A, et al. Photonic jet lens [J]. Scientific reports, 2019, 9(1): 1-8.
[19] Darafsheh A, Walsh G F, Negro L D, et al. Optical super-resolution by high-index liquid-immersed microspheres [J]. Applied Physics Letters, 2012, 101(14): 388-457.
[20] Darafsheh A, Limberopoulos N I, Derov J S, et al. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies [J]. Applied Physics Letters, 2014, 104(6): 061117. doi:  10.1063/1.4864760
[21] Lee S, Li L, Ben-Aryeh Y, et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy [J]. Journal of Optics, 2013, 15(12): 125710. doi:  10.1088/2040-8978/15/12/125710
[22] Lee S, Li L, Wang Z, et al. Immersed transparent microsphere magnifying sub-diffraction-limited objects [J]. Applied Optics, 2013, 52(30): 7265-7270. doi:  10.1364/AO.52.007265
[23] Li L, Guo W, Yan Y, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy [J]. Light: Science & Applications, 2013, 2(9): e104.
[24] Hao X, Kuang C, Liu X, et al. Microsphere based microscope with optical super-resolution capability [J]. Applied Physics Letters, 2011, 99(20): 203102. doi:  10.1063/1.3662010
[25] Zhou Y, Tang Y, He Y, et al. Effects of immersion depth on super-resolution properties of index-different microsphere-assisted nanoimaging [J]. Applied Physics Express, 2018, 11(3): 032501. doi:  10.7567/APEX.11.032501
[26] Zhou Y, Tang Y, Deng Q, et al. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy [J]. Applied Physics Express, 2017, 10(8): 082501. doi:  10.7567/APEX.10.082501
[27] Zhou J, Zeng B, Bi S, et al. Enhanced magnification factors in super-resolution imaging using stacked dual microspheres [J]. Journal of Optics, 2020, 22(8): 085605. doi:  10.1088/2040-8986/aba03c
[28] Luo H, Yu H, Wen Y, et al. Enhanced high-quality super-resolution imaging in air using microsphere lens groups [J]. Optics Letters, 2020, 45(11): 2981-2984. doi:  10.1364/OL.393041
[29] Guo M, Ye Y H, Hou J, et al. Imaging of sub-surface nanostructures by dielectric planer cavity coupled microsphere lens [J]. Optics Communications, 2017, 383: 153-158. doi:  10.1016/j.optcom.2016.09.002
[30] Yang S, Cao Y, Shi Q, et al. Label-free super-resolution imaging of transparent dielectric objects assembled on silver film by a microsphere-assisted microscope [J]. The Journal of Physical Chemistry C, 2019, 123(46): 28353-28358. doi:  10.1021/acs.jpcc.9b07285
[31] Shi Q F, Yang S L, Cao Y R, et al. Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy [J]. Chinese Physics B, 2021, 30(4): 040702. doi:  10.1088/1674-1056/abcf48
[32] Krivitsky L A, Wang J J, Wang Z, et al. Locomotion of microspheres for super-resolution imaging [J]. Scientific Reports, 2013, 3(1): 1-5.
[33] Wang S, Zhang D, Zhang H, et al. Super-resolution optical microscopy based on scannable cantileverʜcombined microsphere [J]. Microscopy Research and Technique, 2015, 78(12): 1128-1132. doi:  10.1002/jemt.22595
[34] Meng K, Gao S, Zhang Y, et al. Optical super-resolution imaging study based on controlling liquid-immersed microsphere[C]//2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2018: 538-542.
[35] Meng Kai. Research on microsphere lens operating system for super-resolution optical imaging[D]. Suzhou: Soochow University, 2019. (in Chinese)
[36] Wang F, Liu L, Yu H, et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging [J]. Nature Communications, 2016, 7(1): 1-10.
[37] Allen K W, Farahi N, Li Y, et al. Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices[C]//Naecon 2014-IEEE National Aerospace and Electronics Conference. IEEE, 2014: 50-52.
[38] Allen K W, Farahi N, Li Y, et al. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis [J]. Annalen der Physik, 2015, 527(7-8): 513-522. doi:  10.1002/andp.201500194
[39] Li J, Liu W, Li T, et al. Swimming microrobot optical nanoscopy [J]. Nano Letters, 2016, 16(10): 6604-6609. doi:  10.1021/acs.nanolett.6b03303
[40] Ashkin A. Optical trapping and manipulation of neutral particles using lasers [J]. Proc Natl Acad Sci, 1997, 94: 4853-4860. doi:  10.1073/pnas.94.10.4853
[41] Liu Xi, Hu Song, Tang Yan, et al. Selecting a proper microsphere to combine optical trapping with microsphere-assisted microscopy [J]. Applied Sciences, 2020, 10(9): 3127. doi:  10.3390/app10093127
[42] Liu X, Hu S, Tang Y. Coated high-refractive-index barium titanate glass microspheres for optically trapped microsphere super-resolution microscopy: a simulation study [J]. Photonics, 2020, 7(4): 84. doi:  10.3390/photonics7040084
[43] Wen Y, Yu H, Zhao W, et al. Scanning super-resolution imaging in enclosed environment by laser tweezer controlled superlens [J]. Biophysical Journal, 2020, 119(12): 2451-2460. doi:  10.1016/j.bpj.2020.10.032
[44] Huszka G, Yang H, Gijs M A M. Dielectric microsphere-based optical system for super-resolution microscopy[C]//2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017: 2003-2006.
[45] Huszka G, Gijs M A M. Custom adapter for extended field-of-view microsphere-based scanning super-resolution microscopy[C]//2018 IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018: 700-703.
[46] Huszka G, Krenger R, Gijs M A M. In vivo imaging with microsphere-based super-resolution microscopy[C]//2018 International Conference on Optical MEMS and Nanophotonics (OMN). IEEE, 2018: 1-2.
[47] Chen L W, Y Zhou, Wu M X, et al. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes [J]. Opto-Electronic Advances, 2018, 1(1): 4-10. doi:  10.29026/oea.2018.170001
[48] Yan B, Wang Z, Parker A L, et al. Superlensing microscope objective lens [J]. Applied Optics, 2017, 56(11): 3142-3147. doi:  10.1364/AO.56.003142
[49] Yan B, Song Y, Yang X, et al. Unibody microscope objective tipped with a microsphere: design, fabrication, and application in subwavelength imaging [J]. Applied Optics, 2020, 59(8): 2641-2648. doi:  10.1364/AO.386504
[50] Song Yang, Yang Xibin, Yan Bing, et al. Super-resolution imaging system based on integrated microsphere objective lens [J]. Acta Phys Sin, 2020, 69(13): 170-178. doi:  10.7498/aps.69.20191994
[51] Song Yang. Design of super-resolution imaging system based on integrated microsphere objective lens[D]. Shanghai: Shanghai University, 2020. (in Chinese)
[52] Huszka G, Yang H, Gijs M A M. Microsphere-based super-resolution scanning optical microscope [J]. Optics Express, 2017, 25(13): 15079-15092. doi:  10.1364/OE.25.015079
[53] Huszka G, Gijs M A M. Turning a normal microscope into a super-resolution instrument using a scanning microlens array [J]. Scientific Reports, 2018, 8(1): 1-8.
[54] Perrin S, Leong-Hoï A, Lecler S, et al. Microsphere-assisted phase-shifting profilometry [J]. Applied Optics, 2017, 56(25): 7249-7255. doi:  10.1364/AO.56.007249
[55] Wang F, Liu L, Yu P, et al. Three-dimensional super-resolution morphology by near-field assisted white-light interferometry [J]. Scientific Reports, 2016, 6: 24703. doi:  10.1038/srep24703
[56] Upputuri P K, Pramanik M. Microsphere-aided optical microscopy and its applications for super-resolution imaging [J]. Optics Communications, 2017, 404: 32-41.
[57] Bezryadina A, Li J, Zhao J, et al. Localized plasmonic structured illumination microscopy with an optically trapped microlens [J]. Nanoscale, 2017, 9(39): 14907-14912. doi:  10.1039/C7NR03654J
[58] Yang H, Moullan N, Auwerx J, et al. Superʜresolution biological microscopy using virtual imaging by a microsphere nanoscope [J]. Small, 2014, 10(9): 1712-1718. doi:  10.1002/smll.201302942
[59] Wen Y, Yu H, Zhao W, et al. Photonic nanojet sub-diffraction nano-fabrication with in situ super-resolution imaging [J]. IEEE Transactions on Nanotechnology, 2019, 18: 226-233.
[60] Li Y, Liu X, Li B. Single-cell biomagnifier for optical nanoscopes and nanotweezers [J]. Light: Science & Applications, 2019, 8: 61.