[1] 胡以华. 激光成像目标侦察[M]. 北京: 国防工业出版社. 2014: 1

Hu Y H. Laser Imaging Target Reconnaissance[M]. Beijing: National Defense Industry Press, 2014: 1.(in Chinese)
[2] 侯阿慧, 胡以华, 赵楠翔, 等. 扩展目标光子测距回波特性及误差研究[J]. 中国激光, 2021, 48(04): 261-268. doi:  10.3788/CJL202148.0401016

Hou A H, Hu Y H, Zhao N X, et al. Echo characteristics and error of extended target for photon ranging [J]. Chinese Journal of Lasers, 2021, 48(4): 0401016. (in Chinese) doi:  10.3788/CJL202148.0401016
[3] 胡以华. 激光相干探测应用理论方法[M]. 北京: 科学出版社. 2022

Hu Y H. Applied Theory and Method of Laser Coherent Detection [M]. Beijing: Science Press, 2022. (in Chinese)
[4] 胡以华. 空间激光成像目标精确侦察技术[J]. 国防科技, 2016, 37(01): 30-36. doi:  10.13943/j.issn1671-4547.2016.01.08

Hu Y H. Space laser imaging target precise reconnaissance technology [J]. National Defense Technology, 2016, 37(1): 30-36. (in Chinese) doi:  10.13943/j.issn1671-4547.2016.01.08
[5] 陈鹏, 赵继广, 宋一铄, 等. 气溶胶环境下FMCW与脉冲激光探测性能对比[J]. 红外与激光工程, 2020, 49(06): 187-196. doi:  10.3788/IRLA20190399

Chen P, Zhao J G, Song Y S, et al. Comparison on detection performance of FMCW and pulsed lidar in aerosol environment [J]. Infrared and Laser Engineering, 2020, 49(6): 20190399. (in Chinese) doi:  10.3788/IRLA20190399
[6] 赵禄达, 董骁, 徐世龙, 等. 典型成像模式下非视域成像重建算法研究现状[J/OL]. 中国光学(中英文). doi:  10.37188/CO.2022-0186

Zhao L D, Dong X, Xu S L, et al. Recent progress of non-line-of-sight imaging reconstruction algorithms in typical imaging modalities [J]. Chinese Optics, 2023, 16(3): 479-499. (in Chinese) doi:  10.37188/CO.2022-0186
[7] 龚文林, 孙建锋, 邓陈进, 等. 基于相干探测的单像素激光成像雷达研究进展[J]. 激光与光电子学进展, 2021, 58(10): 36-48. doi:  10.3788/LOP202158.1011003

Gong W L, Sun J F, Deng C J, et al. Research progress of single-pixel laser imaging radar based on coherent detection [J]. Progress in Laser and Optoelectronics, 2021, 58(10): 1011003. (in Chinese) doi:  10.3788/LOP202158.1011003
[8] Pathak R S. The Wavelet Transform[M]. Paris: Atlantis Press, 2009.
[9] Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding [J]. Signal Processing, 1997, 56(1): 33-44. doi:  10.1016/S0165-1684(97)83621-3
[10] Fang H T, Huang D S. Noise reduction in lidar signal based on discrete wavelet transform [J]. Optics Communications, 2004, 233(1-3): 67-76. doi:  10.1016/j.optcom.2004.01.017
[11] Blu T, Luisier F. The SURE-LET approach to image denoising [J]. IEEE Transactions on Image Processing, 2007, 16(11): 2778-2786. doi:  10.1109/tip.2007.906002
[12] Luisier F, Blu T, Unser M. A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding [J]. IEEE Transactions on Image Processing, 2007, 16(3): 593-606. doi:  10.1109/tip.2007.891064
[13] Wu S, Liu Z, Liu B. Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method [J]. Optics Communications, 2006, 267(1): 137-144. doi:  10.1016/j.optcom.2006.05.069
[14] Tian P, Cao X, Liang J, et al. Improved empirical mode decomposition based denoising method for lidar signals [J]. Optics Communications, 2014, 325: 54-59. doi:  10.1016/j.optcom.2014.03.083
[15] Chang J, Zhu L, Li H, et al. Noise reduction in Lidar signal using correlation-based EMD combined with soft thresholding and roughness penalty [J]. Optics Communications, 2018, 407: 290-295. doi:  10.1016/j.optcom.2017.09.063
[16] Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544. doi:  10.1109/TSP.2013.2288675
[17] Wang Y, Markert R, Xiang J, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system [J]. Mechanical Systems and Signal Processing, 2015, 60: 243-251. doi:  10.1016/j.ymssp.2015.02.020
[18] Yang Y, Jiang D. Casing vibration fault diagnosis based on variational mode decomposition, local linear embedding, and support vector machine [J]. Shock and Vibration, 2017, 2017: 5963239. doi:  10.1155/2017/5963239
[19] Yang W, Peng Z, Wei K, et al. Superiorities of variational mode decomposition over empirical mode decomposition particularly in time–frequency feature extraction and wind turbine condition monitoring [J]. IET Renewable Power Generation, 2017, 11(4): 443-452. doi:  10.1049/iet-rpg.2016.0088
[20] Lian J, Liu Z, Wang H, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic [J]. Mechanical Systems and Signal Processing, 2018, 107: 53-77. doi:  10.1016/j.ymssp.2018.01.019
[21] Mao X, Yang Q, Wang X, et al. Application of variational mode decomposition and whale optimization algorithm to laser ultrasonic signal denoising [J]. Sensors, 2022, 23(1): 354. doi:  10.3390/s23010354
[22] Komaty A, Boudraa A O, Augier B, et al. EMD-based filtering using similarity measure between probability density functions of IMFs [J]. IEEE Transactions on Instrumentation and Measurement, 2013, 63(1): 27-34. doi:  10.1109/tim.2013.2275243
[23] Li Z, Chen J, Zi Y, et al. Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive [J]. Mechanical Systems and Signal Processing, 2017, 85: 512-529. doi:  10.1016/j.ymssp.2016.08.042
[24] Liu Y, Yang G, Li M, et al. Variational mode decomposition denoising combined the detrended fluctuation analysis [J]. Signal Processing, 2016, 125: 349-364. doi:  10.1016/j.sigpro.2016.02.011
[25] 丁红波, 王珍珠, 刘东. 激光雷达信号去噪方法的对比研究[J]. 光学学报, 2021, 41(24): 9-18. doi:  10.3788/AOS202141.2401001

Ding H B, Wang Z Z, Liu D. Comparison of de-noising methods of LiDAR signal [J]. Acta Optica Sinica, 2021, 41(24): 2401001. (in Chinese) doi:  10.3788/AOS202141.2401001
[26] Hua T, Dai K, Zhang X, et al. Optimal VMD-based signal denoising for laser radar via Hausdorff distance and wavelet transform [J]. IEEE Access, 2019, 7: 167997-168010. doi:  10.1109/access.2019.2949063
[27] 胡以华, 张鑫源, 徐世龙, 等. 激光反射层析成像技术的研究进展[J]. 中国激光, 2021, 48(4): 8-25. doi:  10.3788/CJL202148.0401002

Hu Y H, Zhang X, Xu S, et al. Research progress of laser reflective tomography techniques [J]. Chinese Journal of Lasers, 2021, 48(4): 0401002. (in Chinese) doi:  10.3788/CJL202148.0401002
[28] Zhang X, Hu Y, Xu S, et al. Application of image fusion algorithm combined with visual saliency in target extraction of reflective tomography lidar image [J]. Computational Intelligence and Neuroscience, 2022, 2022: 8247344. doi:  10.1155/2022/8247344
[29] Rakotosaona M J, La Barbera V, Guerrero P, et al. Pointcleannet: Learning to denoise and remove outliers from dense point clouds[C]//Computer Graphics Forum. 2020, 39(1): 185-203.
[30] Guerrero P, Kleiman Y, Ovsjanikov M, et al. Pcpnet learning local shape properties from raw point clouds[C]//Computer Graphics Forum, 2018, 37(2): 75-85.
[31] Zhang D, Lu X, Qin H, et al. Pointfilter: Point cloud filtering via encoder-decoder modeling [J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 27(3): 2015-2027. doi:  10.1109/tvcg.2020.3027069
[32] Pistilli F, Fracastoro G, Valsesia D, et al. Learning robust graph-convolutional representations for point cloud denoising [J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 15(2): 402-414. doi:  10.1109/jstsp.2020.3047471
[33] Höfle B, Pfeifer N. Correction of laser scanning intensity data: Data and model-driven approaches [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(6): 415-433. doi:  10.1016/j.isprsjprs.2007.05.008
[34] Eitel J U H, Höfle B, Vierling L A, et al. Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences [J]. Remote Sensing of Environment, 2016, 186: 372-392. doi:  10.1016/j.rse.2016.08.018
[35] Yan W Y, Shaker A, Habib A, et al. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67: 35-44. doi:  10.1016/j.isprsjprs.2011.10.005
[36] Carrea D, Abellan A, Humair F, et al. Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113: 17-29. doi:  10.1016/j.isprsjprs.2015.12.004
[37] Ding Q, Chen W, King B, et al. Combination of overlap-driven adjustment and Phong model for LiDAR intensity correction [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75: 40-47. doi:  10.1016/j.isprsjprs.2012.09.015
[38] 谭凯, 程效军, 张吉星. TLS辐射数据的入射角及距离效应改正方法[J]. 武汉大学学报(信息科学版), 2017, 42(02): 223-228. doi:  10.13203/j.whugis.20150502

Tan K, Cheng X, Zhang J. Correction for incidence angle and distance effects on TLS intensity data [J]. Journal of Wuhan University (Information Science Edition), 2017, 42(2): 223-228. (in Chinese) doi:  10.13203/j.whugis.20150502
[39] Yan W Y, Shaker A. Radiometric correction and normalization of airborne LiDAR intensity data for improving land-cover classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7658-7673. doi:  10.32920/ryerson.14649288.v1
[40] Zhang C, Gao S, Li W, et al. Radiometric calibration for incidence angle, range and sub-footprint effects on hyperspectral LiDAR backscatter intensity [J]. Remote Sensing, 2020, 12(17): 2855. doi:  10.3390/rs12172855
[41] 纪红柱, 陈思颖, 张寅超, 等. 地基离轴拉曼-米激光雷达几何因子校正[J]. 北京理工大学学报, 2019, 39(06): 644-649. doi:  10.15918/j.tbit1001-0645.2019.06.015

Ji H Z, Chen S Y, Zhang Y C, et al. Determination of geometric factor for ground-based Raman-Mie lidar with bi-static configuration [J]. Journal of Beijing University of Technology (Natural Edition), 2019, 39(6): 644-649. (in Chinese) doi:  10.15918/j.tbit1001-0645.2019.06.015
[42] Su J, Mccormick M P, Liu Z, et al. Obtaining a ground-based lidar geometric form factor using coincident spacebornelidar measurements [J]. Applied Optics, 2010, 49(1): 108-113.
[43] Zhang X, Xue Z. Geometrical error correction research in high precision 2D laser measuring instrument[C]//Sixth International Symposium on Precision Engineering Measurements and Instrumentation, SPIE, 2010, 7544: 1710-1717.
[44] Liu Y, Chen S, Zhang Y, et al. Algorithm of geometry correction for airborne 3D scanning laser radar[C]//2009 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications. SPIE, 2009, 7508: 452-462.
[45] Skaloud J, Lichti D. Rigorous approach to bore-sight self-calibration in airborne laser scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(1): 47-59. doi:  10.1016/j.isprsjprs.2006.07.003
[46] Rewehel E M, Li J, Keshk H M, et al. Geometric correction of aerial camera and LiDAR hybrid system data using GNSS/IMU[C]//2022 IEEE 13th International Conference on Software Engineering and Service Science (ICSESS), IEEE, 2022: 54-58.
[47] Chen B, Pang Y. A denoising approach for detection of canopy and ground from ICESat-2's airborne simulator data in Maryland, USA[C]//AOPC 2015: Advances in Laser Technology and Applications, SPIE, 2015, 9671: 383-387.
[48] Gao R, Park J, Hu X, et al. Reflective noise filtering of large-scale point cloud using multi-position LiDAR sensing data [J]. Remote Sensing, 2021, 13(16): 3058. doi:  10.3390/rs13163058
[49] Li Y, Fu H, Zhu J, et al. A filtering method for ICESat-2 photon point cloud data based on relative neighboring relationship and local weighted distance statistics [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(11): 1891-1895.
[50] Wang X, Pan Z, Glennie C. A novel noise filtering model for photon-counting laser altimeter data [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 947-951. doi:  10.1109/LGRS.2016.2555308
[51] Zhu X, Nie S, Wang C, et al. A noise removal algorithm based on OPTICS for photon-counting LiDAR data [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(8): 1471-1475.
[52] Zaman F, Wong Y P, Ng B Y. Density-based denoising of point cloud[C]//9th International Conference on Robotic, Vision, Signal Processing and Power Applications: Empowering Research and Innovation. Springer Singapore, 2017: 287-295.
[53] Liu Z, Xiao X, Zhong S, et al. A feature-preserving framework for point cloud denoising [J]. Computer-Aided Design, 2020, 127: 102857. doi:  10.1016/j.cad.2020.102857
[54] Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[55] Roveri R, Öztireli A C, Pandele I, et al. Pointpronets: Consolidation of point clouds with convolutional neural networks[C]//Computer Graphics Forum, 2018, 37(2): 87-99.
[56] Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C]//2010 IEEE Intelligent Vehicles Symposium. IEEE, 2010: 560-565.
[57] Zermas D, Izzat I, Papanikolopoulos N. Fast segmentation of 3D point clouds: A paradigm on lidar data for autonomous vehicle applications[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 5067-5073.
[58] Moosmann F, Pink O, Stiller C. Segmentation of 3D lidar data in non-flat urban environments using a local convexity criterion[C]//2009 IEEE Intelligent Vehicles Symposium, 2009: 215-220.
[59] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6): 381-395. doi:  10.1145/358669.358692
[60] Narksri P, Takeuchi E, Ninomiya Y, et al. A slope-robust cascaded ground segmentation in 3D point cloud for autonomous vehicles[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018: 497-504.
[61] Paigwar A, Erkent Ö, Sierra-Gonzalez D, et al. Gndnet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020: 2150-2156.
[62] Xu J, Zhang R, Dou J, et al. Rpvnet: A deep and efficient range-point-voxel fusion network for lidar point cloud segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 16024-16033.
[63] Shen Z, Liang H, Lin L, et al. Fast ground segmentation for 3d lidar point cloud based on jump-convolution-process [J]. Remote Sensing, 2021, 13(16): 3239. doi:  10.3390/rs13163239
[64] 郭冠军, 李树楷, 胡以华. 机载激光雷达测距性能研究[J]. 光电子·激光, 2001(06): 592-595. doi:  10.16136/j.joel.2001.06.013

Guo G J, Li S K, Hu Y H. Study on the ranging performance of the airborne lidar [J]. Journal of Optoelectronics ·Laser, 2001(6): 592-595. (in Chinese) doi:  10.16136/j.joel.2001.06.013
[65] 刘鸿彬, 李铭, 王凤香, 等. 一种少光子高精度多波束激光雷达系统及验证[J]. 红外与毫米波学报, 2019, 38(04): 535-541. doi:  10.11972/j.issn.1001-9014.2019.04.021

Liu H B, Li M, Wang F X, et al. A high accuracy multi-beam lidar system and its verification on several photons [J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 535-541. (in Chinese) doi:  10.11972/j.issn.1001-9014.2019.04.021
[66] 刘鸿彬, 李铭, 舒嵘, 等. 少光子灵敏度精密激光测距方法及验证[J]. 红外与激光工程, 2019, 48(1): 93-99. doi:  10.3788/IRLA201948.0106001

Liu H B, Li M, Shu R, et al. Estimation and verification of high-accuracy laser ranging on several photons [J]. Infrared and Laser Engineering, 2019, 48(1): 0106001. (in Chinese) doi:  10.3788/IRLA201948.0106001
[67] Hou A H, Hu Y H, Zhao N X, et al. Full-waveform fast correction method for photon counting lidar [J]. Chinese Optics Letters, 2021, 19(5): 87-92. doi:  10.3788/col202119.052701
[68] Zhou H, Chen Y, Hyyppä J, et al. An overview of the laser ranging method of space laser altimeter [J]. Infrared Physics & Technology, 2017, 86: 147-158. doi:  10.1016/j.infrared.2017.09.011
[69] Hao Q, Cao J, Hu Y, et al. Differential optical-path approach to improve signal-to-noise ratio of pulsed-laser range finding [J]. Optics Express, 2014, 22(1): 563-575. doi:  10.1364/oe.22.000563
[70] 胡善江, 贺岩, 俞家勇, 等. 基于深度学习的脉冲激光测距回波时刻解算方法[J]. 中国激光, 2019, 46(10): 302-311. doi:  10.3788/CJL201946.1010001

Hu S J, He Y, Yu J Y. Method for solving echo time of pulse laser ranging based on deep learning [J]. Chinese Journal of Laser, 2019, 46(10): 1010001. (in Chinese) doi:  10.3788/CJL201946.1010001
[71] Xu X, Chen Y, Zhu K, et al. Research on FPGA pulse laser ranging method based on deep learning [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11. doi:  10.1109/tim.2021.3096281
[72] Li P, Wang R, Wang Y, et al. Evaluation of the ICP algorithm in 3D point cloud registration [J]. IEEE Access, 2020, 8: 68030-68048. doi:  10.1109/ACCESS.2020.2986470
[73] Yang J, Li H, Jia Y. Go-icp: Solving 3D registration efficiently and globally optimally[C]//Proceedings of the IEEE International Conference on Computer Vision, 2013: 1457-1464.
[74] Rosen D M, Carlone L, Bandeira A S, et al. A certifiably correct algorithm for synchronization over the special Euclidean group[C]//Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics. Cham: Springer International Publishing, 2020: 64-79.
[75] Izatt G, Dai H, Tedrake R. Globally optimal object pose estimation in point clouds with mixed-integer programming[C]//Robotics Research: The 18th International Symposium ISRR. Springer International Publishing, 2020: 695-710.
[76] Maturana D, Scherer S. Voxnet: A 3D convolutional neural network for real-time object recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015: 922-928.
[77] Wu Z, Song S, Khosla A, et al. 3D ShapeNets: A deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1912-1920.
[78] Aoki Y, Goforth H, Srivatsan R A, et al. Pointnetlk: Robust & efficient point cloud registration using pointnet[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7163-7172.
[79] Chu J, Nie C. Multi-view point clouds registration and stitching based on SIFT feature[C]//2011 3rd International Conference on Computer Research and Development, IEEE, 2011, 1: 274-278.
[80] 范强, 刘鹏, 杨俊, 等. 基于3 D-Harris与FPFH改进的3 D-NDT配准算法[J]. 图学学报, 2020, 41(04): 567-575. doi:  10.11996/JG.j.2095-302X.2020040567

Fan Q, Liu P, Yang J, et al. Improved 3D-NDT point cloud registration algorithm based on 3D-Harris and FPFH [J]. Journal of Graphics, 2020, 41(4): 567-575. (in Chinese) doi:  10.11996/JG.j.2095-302X.2020040567
[81] Zhong Y, Bai F, Liu Y, et al. Point cloud splicing based on 3D-Harris operator[C]//2021 3rd International Symposium on Smart and Healthy Cities (ISHC), IEEE, 2021: 61-66.
[82] 杨彪, 胡以华. 代数迭代法在激光反射断层成像目标重构中的应用[J]. 红外与激光工程, 2019, 48(07): 287-293. doi:  10.3788/IRLA201948.0726002

Yang Biao, Hu Yihua. Laser reflection tomography target reconstruction algorithm based on algebraic iteration [J]. Infrared and Laser Engineering, 2019, 48(7): 0726002. (in Chinese) doi:  10.3788/IRLA201948.0726002
[83] 刘一凡, 胡以华, 徐世龙, 等. 基于波形分解的激光反射层析成像优化方法[J]. 光学学报, 2023, 43(18): 1828002. doi:  10.3788/AOS222044

Liu Y F, Hu Y H, Xu S L, et al. Optimization method for laser reflective tomography imaging based on waveform decomposition method [J]. Acta Optica Sinica, 2023, 43(18): 1828002. (in Chinese) doi:  10.3788/AOS222044
[84] Hu Y. Theory and Technology of Laser Imaging Based Target Detection[M]. Singapore: Springer Press, 2018.
[85] Moosmann F, Fraichard T. Motion estimation from range images in dynamic outdoor scenes[C]//2010 IEEE International Conference on Robotics and Automation, IEEE, 2010: 142-147.
[86] Dewan A, Caselitz T, Tipaldi G D, et al. Motion-based detection and tracking in 3d lidar scans[C]//2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2016: 4508-4513.
[87] Dewan A, Caselitz T, Tipaldi G D, et al. Rigid scene flow for 3D lidar scans[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2016: 1765-1770.
[88] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017: 30.
[89] Zeng Y, Hu Y, Liu S, et al. Rt3d: Real-time 3D vehicle detection in lidar point cloud for autonomous driving [J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3434-3440. doi:  10.1109/lra.2018.2852843
[90] Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4490-4499.
[91] Liu X, Qi C R, Guibas L J. Flownet3d: Learning scene flow in 3d point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 529-537.
[92] Wang Z, Li S, Howard-Jenkins H, et al. Flownet3d++: Geometric losses for deep scene flow estimation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 91-98.
[93] Mayer N, Ilg E, Hausser P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4040-4048.
[94] Gojcic Z, Litany O, Wieser A, et al. Weakly supervised learning of rigid 3D scene flow[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 5692-5703.
[95] Wang G, Wu X, Liu Z, et al. Hierarchical attention learning of scene flow in 3D point clouds [J]. IEEE Transactions on Image Processing, 2021, 30: 5168-5181. doi:  10.1109/tip.2021.3079796
[96] Tishchenko I, Lombardi S, Oswald M R, et al. Self-supervised learning of non-rigid residual flow and ego-motion[C]//2020 International Conference on 3D Vision (3DV), IEEE, 2020: 150-159.
[97] Baur S A, Emmerichs D J, Moosmann F, et al. SLIM: Self-supervised LiDAR scene flow and motion segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 13126-13136.
[98] Behl A, Paschalidou D, Donné S, et al. Pointflownet: Learning representations for rigid motion estimation from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7962-7971.
[99] Milioto A, Vizzo I, Behley J, et al. Rangenet++: Fast and accurate lidar semantic segmentation[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2019: 4213-4220.
[100] Cortinhal T, Tzelepis G, Erdal Aksoy E. SalsaNext: Fast, uncertainty-aware semantic segmentation of LiDAR point clouds[C]//International Symposium on Visual Computing. Cham: Springer, 2020: 207-222.
[101] Li S, Chen X, Liu Y, et al. Multi-scale interaction for real-time lidar data segmentation on an embedded platform [J]. IEEE Robotics and Automation Letters, 2021, 7(2): 738-745. doi:  10.1109/lra.2021.3132059
[102] Kim J, Woo J, Im S. RVMOS: Range-view moving object segmentation leveraged by semantic and motion features [J]. IEEE Robotics and Automation Letters, 2022, 7(3): 8044-8051. doi:  10.1109/lra.2022.3186080
[103] Chen X, Li S, Mersch B, et al. Moving object segmentation in 3D LiDAR data: A learning-based approach exploiting sequential data [J]. IEEE Robotics and Automation Letters, 2021, 6(4): 6529-6536. doi:  10.1109/lra.2021.3093567
[104] Mersch B, Chen X, Vizzo I, et al. Receding moving object segmentation in 3D lidar data using sparse 4D convolutions [J]. IEEE Robotics and Automation Letters, 2022, 7(3): 7503-7510. doi:  10.1109/lra.2022.3183245
[105] Sun J, Dai Y, Zhang X, et al. Efficient spatial-temporal information fusion for Lidar-based 3d moving object segmentation[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2022: 11456-11463.
[106] Hu H K, Sun S, Lin H Z, et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects [J]. Optics Express, 2020, 28(25): 37284-37293. doi:  10.1364/oe.412597
[107] Wang S, Li L, Yu Z, et al. Image-free target classification with semi-active laser detection system [J]. IEEE Sensors Journal, 2022, 22(23): 22331642. doi:  10.1109/jsen.2022.3217281
[108] Chen Y, Tang J, Jiang C, et al. The accuracy comparison of three simultaneous localization and mapping (SLAM)-based indoor mapping technologies [J]. Sensors, 2018, 10(18): 3225.
[109] Yin T, Zhou X, Krähenbühl P. Multimodal virtual point 3D detection[C]//Advances in Neural Information Processing Systems, 2021, 34: 16494-16507.