[1] Tünnermann A, Schreiber T, Röser F, et al. The renaissance and bright future of fibre lasers [J]. Journal of Physics B Atomic Molecular & Optical Physics, 2005, 38(9): S681.
[2] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers [J]. Nature Photonics, 2013, 7(11): 861-867. doi:  10.1038/nphoton.2013.273
[3] Zervas M N, Codemard C A. High power fiber lasers: a review [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi:  10.1109/JSTQE.2014.2321279
[4] Stutzki F, Jansen F, Otto H, et al. Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems [J]. Optica, 2014, 1(4): 233. doi:  10.1364/OPTICA.1.000233
[5] Smith A V, Smith J J. Mode instability in high power fiber amplifiers [J]. Optics Express, 2011, 19(11): 10180-92. doi:  10.1364/OE.19.010180
[6] Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems [J]. Optics Express, 2012, 20(12): 12912-12925. doi:  10.1364/OE.20.012912
[7] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power [J]. Optics Letters, 2010, 35(2): 94-96. doi:  10.1364/OL.35.000094
[8] Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers [J]. Optics Express, 2013, 21(2): 1944-1971. doi:  10.1364/OE.21.001944
[9] Dong L. Stimulated thermal Rayleigh scattering in optical fibers [J]. Optics Express, 2013, 21(3): 2642-2656. doi:  10.1364/OE.21.002642
[10] Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations [J]. Optics Express, 2013, 21(13): 16111-16129. doi:  10.1364/OE.21.016111
[11] Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 472-483. doi:  10.1109/JSTQE.2013.2296372
[12] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-19.
[13] Chu Q, Tao R, Li C, et al. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier [J]. Scientific Reports, 2019, 9(1): 1-7. doi:  10.1038/s41598-018-37186-2
[14] Jauregui C, Stihler C, Tu Y, et al. Mitigation of transverse mode instability with travelling waves in high-power fiber amplifiers[C]//Fiber Lasers XVII: Technology and Systems. International Society for Optics and Photonics, 2020, 11260: 112601A.
[15] Tao Rumao, Wang Xiaolin, Xiao Hu, et al. Theoretical study of the threshold power of mode instability in high-power fiber amplifiers [J]. Acta Optica Sinica, 2014, 34(1): 0114002. doi:  10.3788/AOS201434.0114002
[16] Stihler C, Jauregui C, Kholaif S E, et al. Intensity noise as a driver for transverse mode instability in fiber amplifiers [J]. PhotoniX, 2020, 1(1): 1-17. doi:  10.1186/s43074-020-00006-w
[17] Marcuse D. Curvature loss formula for optical fibers [J]. JOSA, 1976, 66(3): 216-220. doi:  10.1364/JOSA.66.000216
[18] Tao R, Su R, Ma P, et al. Suppressing mode instabilities by optimizing the fiber coiling methods [J]. Laser Physics Letters, 2016, 14(2): 025101.
[19] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J]. Optics Express, 2011, 19(14): 13218-13224. doi:  10.1364/OE.19.013218
[20] Tao R, Ma P, Wang X, et al. Experimental study on mode instabilities in all-fiberized high-power fiber amplifiers [J]. Chinese Optics Letters, 2014, 12(s2): s20603. doi:  s20603