[1] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Review of Modern Physics, 2006, 78(4): 1135-1184.
[2]
[3] Sanghera J S, Shaw L B, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR Sources and applications[J]. IEEE, 2009, 15(1): 114-118.
[4]
[5]
[6] Dai Shixun, Chen Huiguang, Li Maozhong, et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4): 847-852. (in Chinese)戴世勋, 陈惠广, 李茂忠, 等. 硫系玻璃及其在红外光学系统中的应用[J]. 红外与激光工程, 2012, 41(4): 847-852.
[7] Jonathan H, Price H V, Monro T M, et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers [J]. IEEE, 2007, 13(3): 738-748.
[8]
[9]
[10] Shaw L B, Gattass R R, Sanghera J S, et al. All-fiber mid-IR supercontinuum source from 1.5 to 5 m[C]//SPIE, 2011, 7914, 79140P.
[11]
[12] Weiblen R J, Docherty A, Hu J, et al. Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers[J]. Optics Express, 2010, 18(25): 26666-26674.
[13] Slusher R E, Lens G, Hodelin J, et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers[J]. Journal of Optical Society of America B, 2004, 21(6): 1146-1155.
[14]
[15] Marcuse D. Light Transmission Optics [M]. New York: Van Nostrand Reinhold, 1982.
[16]
[17] Cherif R, Salem A B, Zghal M, et al. Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation[J]. Optical Engineering, 2010, 49(9): 095002.
[18]
[19] Ung B, Skorobogatiy M. Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared[J]. Optics Express, 2010, 18(8): 8647-8659.
[20]
[21] Agrawal G P. Nonlinear Fiber Optics Fourth Edition Applications of Nonlinear Fiber Optics[M]. 2nd ed. Singapore: Elsevier Pte. Ltd., 2009.
[22]
[23] Dudley J M, Taylor J R. Supercontinuum Generation in Optical Fiber [M]. New York: Cambridge University Press, 2010.