[1] Golden R. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards [J]. Critical Reviews in Toxicology, 2011, 41(8): 671-721.
[2] Liu Wenqing, Cheng Zhenyi, Liu Jianguo, et al. Stereoscopic monitoring technology and applications for the atmospheric environment in China [J]. Chin Sci Bull, 2016, 61(30): 3196. doi:  10.1360/N972016-00394
[3] Di Huige, Hua Dengxin. Research status and progress of Lidar for atmosphere in China [J]. Infrared and Laser Engineering, 2021, 50(3): 20210032. (in Chinese) doi:  10.3788/IRLA20210032
[4] Chen Yuqin, Tan Wenyuan, Fu Dayou, et al. Research progress of formaldehyde detection [J]. Applied Chemical Industry, 2018, 47(6): 1258-1262.
[5] Xu Fei, Zhou Xiaobin, Liu Zhengbo, et al. Near-infrared optical-feedback linear cavity-enhanced absorption spectroscopy [J]. Optics and Precision Engineering, 2021, 29(5): 933-939. (in Chinese) doi:  10.37188/OPE.2020.0657
[6] Liu Qiuwu, Wang Xiaobin, Chen Yafeng, et al. Detection of atmospheric NO2 concentration by differential absorption lidar based on dye laser [J]. Acta Optica Sinica, 2017, 37(4): 0428004. (in Chinese)
[7] Shao Jiangfeng, Hua Dengxin, Wang Li, et al. Development of ultraviolet dual-wavelength lidar and analysis of its signal-to-noise ratio [J]. Acta Optica Sinica, 2020, 40(12): 1201004. (in Chinese)
[8] Gong Yu, Bu Lingbing, Yang Bin, et al. High repetition rate mid-infrared differential absorption lidar for atmospheric pollution detection [J]. Sensors, 2020, 20(8): 2211. doi:  10.3390/s20082211
[9] Qi Zhong, Zhang Teng, Han Ge, et al. A nonlinear merging method of analog and photon signals for CO2 detection in lower altitudes using differential absorption lidar [J]. Optics Communications, 2017, 388: 68-76. doi:  10.1016/j.optcom.2016.11.071
[10] Veerabuthiran S, Razdan A K, Jindal M K, et al. Open field testing of mid IR DIAL for remote detection of thiodiglycol vapor plumes in the topographic target configuration [J]. Sens Actuator B-Chem, 2019, 298: 7.
[11] Weibring P, Edner H, Svanberg S. Versatile mobile lidar system for environmental monitoring [J]. Appl Opt, 2003, 42(18): 3583-3594. doi:  10.1364/AO.42.003583
[12] Hong Guanglie, Li Jiatang, Kong Wei, et al. 935 nm differential absorption lidar system and water vapor profiles in convective boundary layer [J]. Acta Optica Sinica, 2017, 37(2): 0201003. (in Chinese)
[13] Zhang Yang, Huang Weidong, Dong Changzhe, et al. Research on the development of the detection satellite technology in oceanographic lidar [J]. Infrared and Laser Engineering, 2020, 49(11): 20201045. (in Chinese) doi:  10.3788/IRLA20201045
[14] Edner H, Fredriksson K, Sunesson A, et al. Mobile remote sensing system for atmospheric monitoring [J]. Appl Opt, 1987, 26(19): 4330. doi:  10.1364/AO.26.004330
[15] Gholamreza Shayeganrad. Single laser-based differential absorption lidar (DIAL) for remote profiling atmospheric oxygen [J]. Optics and Lasers in Engineering, 2018, 111: 80-85. doi:  10.1016/j.optlaseng.2018.07.015
[16] Ge Ye, Shu Rong, Hu Yihua, et al. System design and performance simulation of ground-based differential absorption lidar for water-vapor measurements [J]. Acta Phys Sin, 2014, 63(20): 204301. (in Chinese)
[17] Xu Ling, Bu Lingbing, Cai Haoze, et al. Wavelength selection and detection capability simulation of the midinfrared DIAL for NO2 detecion [J]. Infrared and Laser Engineering, 2018, 47(10): 1030002. (in Chinese) doi:  10.3788/IRLA201847.1030002
[18] Yao Yizhou, Zhang Xianbao. Analysis of pollution characteristics and sources of volatile organic compounds in Zhenjiang [J]. The Administration and Technique of Environ-mental Monitoring, 2021, 33(5): 60-63.
[19] Mei Liang. Applications of laser spectroscopy in enviroumental monitoring[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)