[1] Pile D, Horiuchi N, Won R, et al. Extending opportunities[J]. Nature Photonics, 2012, 6(7): 407.
[2] Soref R A, Emelett S J, Buchwald W R. Silicon waveguided components for the long-wave infrared region[J]. Journal of Optics A: Pure and Applied Optics, 2006, 8(10): 840-848.
[3] Hu J, Meyer J, Richardson K, et al. Feature issue introduction: mid-IR photonic materials[J]. Optical Materials Express, 2013, 3(9): 1571.
[4] Lin H, Song Y, Huang Y, et al. Chalcogenide glass-on-graphene photonics[J]. Nature Photonics, 2017, 11(12): 798-805.
[5] Vlasov Y A, O'boyle M, Hamann H F, et al. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 65-69.
[6] Malik A, Dwivedi S, Landschoot L V, et al. Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared[J]. Optics Express, 2014, 22(23): 28479-28488.
[7] Zou Y, Chakravarty S, Chung C J, et al. Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach–Zehnder interferometers [C]//Proceedings of the Optical Interconnects XVI, 2016.
[8] Nedeljkovic M, Stankovic S, Mitchell C J, et al. Mid-infrared thermo-optic modulators in Sol [J]. IEEE Photonics Technology Letters, 2014, 26(13): 1352-1355.
[9] Campenhout J V, Green W M J, Assefa S, et al. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices[J]. Optics Letters, 2010, 35(7): 1013-1015.
[10] Shen L, Huang M, Zheng S, et al. High-performance silicon 2×2 thermo-optic switch for the 2-μm wavelength band[J]. IEEE Photonics Journal, 2019, 11(4): 1-6.
[11] Shen W, Du J, Xu K, et al. On-chip selective dual-mode switch for 2-μm wavelength high-speed optical interconnection[J]. IEEE Photonics Technology Letters, 2021, 33(10): 483-486.
[12] Zhong C, Ma H, Sun C, et al. Fast thermo-optical modulators with doped-silicon heaters operating at 2 μm[J]. Optics Express, 2021, 29(15): 23508-23516.
[13] Sturm J C, Reaves C M. Fundamental mechanisms and doping effects in silicon infrared absorption for temperature measurement by infrared transmission[J]. Rapid Thermal and Related Processing Technique, 1990, 1393: 309-315.
[14] Isenberg J, Warta W. Free carrier absorption in heavily doped silicon layers[J]. Applied Physics Letters, 2004, 84(13): 2265-2267.
[15] Schmid P E. Optical absorption in heavily doped silicon[J]. Physical Review B, 1981, 23(10): 5531-5536.
[16] Weigel P O, Savanier M, Derose C T, et al. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics[J]. Scientific Reports, 2016, 6: 22301.
[17] Rabiei P, Ma J, Khan S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 2013, 21(21): 25573-25581.
[18] Chiles J, Fathpour S. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics[J]. Optica, 2014, 1(5): 350-355.
[19] Jacobsen R S, Andersen K N, Borel P I, et al. Strained silicon as a new electro-optic material[J]. Nature, 2006, 441(7090): 199-202.
[20] Chmielak B, Waldow M, Matheisen C, et al. Pockels effect based fully integrated, strained silicon electro-optic modulator[J]. Optics Express, 2011, 19(18): 17212-17219.
[21] Mishra J, Mckenna T P, Ng E, et al. Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire[J]. Optica, 2021, 8(6): 921-924.
[22] Nedeljkovic M, Soref R, Mashanovich G Z. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range[J]. IEEE Photonics Journal, 2011, 3(6): 1171-1180.
[23] Nedeljkovic M, Soref R, Mashanovich G Z. Predictions of free-carrier electroabsorption and electrorefraction in Germanium[J]. IEEE Photonics Journal, 2015, 7(3): 1-14.
[24] Van Camp M A, Assefa S, Gill D M, et al. Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer[J]. Optics Express, 2012, 20(27): 28009-28016.
[25] Thomson D J, Shen L, Ackert J J, et al. Optical detection and modulation at 2 μm-2.5 μm in silicon[J]. Optics Express, 2014, 22(9): 10825-10830.
[26] Nedeljkovic M, Littlejohns C G, Khokhar A Z, et al. Silicon-on-insulator free-carrier injection modulators for the mid-infrared[J]. Optics Letters, 2019, 44(4): 915-918.
[27] Cao W, Hagan D, Thomson D J, et al. High-speed silicon modulators for the 2  μm wavelength band[J]. Optica, 2018, 5(9): 1055-1062.
[28] Li T, Nedeljkovic M, Hattasan N, et al. Ge-on-Si modulators operating at mid-infrared wavelengths up to 8  μm[J]. Photonics Research, 2019, 7(8): 828-836.
[29] Li T, Nedeljkovic M, Hattasan N, et al. Mid-infrared Ge-on-Si electro-absorption modulator [C]//Proceedings of the IEEE International Conference on Group IV Photonics, 2017.
[30] Shen L, Healy N, Mitchell C J, et al. Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides[J]. Optics Letters, 2015, 40(2): 268-271.
[31] Soref R A, Sun G, Cheng H H. Franz-Keldysh electro-absorption modulation in germanium-tin alloys[J]. Journal of Applied Physics, 2012, 111(12): 19957-19965.
[32] Zhang Q, Liu Y, Yan J, et al. Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications[J]. Optics Express, 2015, 23(6): 7924-7932.
[33] Lin C, Grassi R, Low T, et al. Multilayer black phosphorus as a versatile mid-infrared electro-optic material[J]. Nano Letters, 2016, 16(3): 1683-1689.
[34] Whitney W S, Sherrott M C, Jariwala D, et al. Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus[J]. Nano Letters, 2017, 17(1): 78-84.
[35] Peng R, Khaliji K, Youngblood N, et al. Mid-infrared electro-optic modulation in few-layer black phosphorus[J]. Nano Letters, 2017, 17(10): 6315-6320.
[36] Dalir H, Xia Y, Wang Y, et al. A thermal broadband graphene optical modulator with 35 GHz speed[J]. ACS Photonics, 2016, 3(9): 1564-1568.
[37] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 19912.
[38] Lin H T, Luo Z Q, Gu T, et al. Mid-infrared integrated photonics on silicon: A perspective[J]. Nanophotonics, 2018, 7(2): 393-420.
[39] Dereniak E L, Boreman G D. Infrared Detectors and Systems [M]. New York: John Wiley & Sons, 1996.
[40] Rogalski A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154.
[41] Rogalski A. Progress in focal plane array technologies[J]. Progress in Quantum Electronics, 2012, 36(2-3): 342-473.
[42] Kinch M A. State-of-the-Art Infrared Detector Technology [M]. US: SPIE, 2014.
[43] Ahn D. Intrachip clock signal distribution via si-based optical interconnect[D]. Cambridge: Massachusetts Institute of Technology, 2007.
[44] Hattasan N, Gassenq A, Cerutti L, et al. Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit[J]. IEEE Photonics Technology Letters, 2011, 23(23): 1760-1762.
[45] Gassenq A, Hattasan N, Cerutti L, et al. Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip[J]. Optics Express, 2012, 20(11): 11665-11672.
[46] Ryckeboer E, Gassenq A, Muneeb M, et al. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm[J]. Optics Express, 2013, 21(5): 6101-6108.
[47] Wang R, Sprengel S, Muneeb M, et al. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits[J]. Opt Express, 2015, 23(20): 26834-26841.
[48] Wang R, Muneeb M, Sprengel S, et al. III-V-on-silicon 2-microm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors[J]. Opt Express, 2016, 24(8): 8480-8490.
[49] Muneeb M, Vasiliev A, Ruocco A, et al. III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range[J]. Opt Express, 2016, 24(9): 9465-9472.
[50] Han Z, Singh V, Kita D, et al. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors[J]. Applied Physics Letters, 2016, 109(7): 279-308.
[51] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891.
[52] Ma Y, Dong B, Wei J, et al. High‐responsivity mid‐infrared black phosphorus slow light waveguide photodetector[J]. Advanced Optical Materials, 2020, 8(13): 2000337.
[53] Souhan B, Grote R R, Chen C P, et al. Si (+)-implanted Si-wire waveguide photodetectors for the mid-infrared[J]. Opt Express, 2014, 22(22): 27415-27424.
[54] Grote R R, Souhan B, Ophir N, et al. Extrinsic photodiodes for integrated mid-infrared silicon photonics[J]. Optica, 2014, 1(4): 264-267.
[55] Souhan B, Chen C, Lu M, et al. Ar+-implanted Si-waveguide photodiodes for mid-infrared detection[J]. Photonics, 2016, 3(3): 46.
[56] Ackert J J, Thomson D J, Shen L, et al. High-speed detection at two micrometres with monolithic silicon photodiodes[J]. Nature Photonics, 2015, 9(6): 393-396.
[57] Fain R, Miller S A, Yu M. CMOS-compatible Mid-Infrared Silicon Detector [C]//CLEO: Science and Innovations Optical Society of America, 2017.
[58] Wang J, Hu J, Becla P, et al. Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform[J]. Opt Express, 2010, 18(12): 12890-12896.
[59] Wang J, Zens T, Hu J, et al. Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon[J]. Applied Physics Letters, 2012, 100(21): 211106.
[60] Heves E, Ozturk C, Ozguz V, et al. Solution-based PbS photodiodes, integrable on ROIC, for SWIR detector applications[J]. IEEE Electron Device Letters, 2013, 34(5): 662-664.
[61] Wang J, Hu J, Sun X, et al. Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films[J]. Journal of Applied Physics, 2008, 104(5): 053707.
[62] Wang J, Hu J, Becla P, et al. Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study[J]. Journal of Applied Physics, 2011, 110(8): 14-26.
[63] Hu J, Tarasov V, Carlie N, et al. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides[J]. Optics Express, 2007, 15(19): 11798-11807.
[64] Wang Jianfei. Resonant-cavity-enhanced multispectral infrared photodetectors for monolithic integration on silicon[D]. Cambridge: Massachusetts Institute of Technology, 2011.
[65] Li H, Brouillet J, Salas A, et al. Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics[J]. Optical Materials Express, 2013, 3(9): 1385-1396.
[66] Lhuillier E, Keuleyan S, Zolotavin P, et al. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors[J]. Adv Mater, 2013, 25(1): 137-141.
[67] Simmons C B, Akey A J, Mailoa J P, et al. Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band[J]. Advanced Functional Materials, 2014, 24(19): 2852-2858.
[68] Berencen Y, Prucnal S, Liu F, et al. Room-temperature short-wavelength infrared Si photodetector[J]. Sci Rep, 2017, 7: 43688.
[69] Lin H, Luo Z, Gu T, et al. Mid-infrared integrated photonics on silicon: A perspective[J]. Nanophotonics, 2017, 7(2): 0085.
[70] Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nature Photonics, 2015, 9(4): 247-252.
[71] Liu B, Kopf M, Abbas A N, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties[J]. Adv Mater, 2015, 27(30): 4423-4429.
[72] Deckoff J S, Wang Y, Lin H, et al. Tellurene: A multifunctional material for midinfrared optoelectronics[J]. ACS Photonics, 2019, 6(7): 1632-1638.
[73] Tong L, Huang X, Wang P, et al. Stable mid-infrared polarization imaging based on quasi-2 D tellurium at room temperature[J]. Nat Commun, 2020, 11(1): 2308.
[74] Li T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire[J]. Nat Nanotechnol, 2021, 16(11): 1201-1207.
[75] Huang Y, Tien E K, Gao S, et al. Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides[J]. Applied Physics Letters, 2011, 99(18): 537.
[76] Liu X, Kuyken B, Roelkens G, et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation[J]. Nature Photonics, 2012, 6(10): 667-671.
[77] Chen W, Roelli P, Hu H, et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity [J]. Science, 2021, 374(6572): 1264-1267.