[1]
[2] Jiang Dagang, Deng Ke, Qin Kaiyu. Laser beam wander monitoring with large aperture for terrestrial free space optical communication[C]//The Tenth International Conference on Electronic Measurement Instruments, 2011: 308-311.
[3]
[4] Tsiftsis Theodoros A, Sandalidis Harilaos G, Karagiannidis George K. FSO links with spatial diversity over strong atmospheric turbulence channels[J]. IEEE Transaction on Wireless Communications, 2009, 8(2): 951-957.
[5] Pavel Polynkin, Avner Peleg, Laura Klein, et al. Optimized multiemitter beams for free-space optical communications through turbulent atmosphere[J]. Optics Letters, 2007, 32(8): 885-887.
[6]
[7] Zhao Zhijun, Lyke Stephen D, Roggemann Michael C. Adaptive optical communication through turbulent atmospheric channel[C]//IEEE International Conference on Communications, 2008: 5432-5436.
[8]
[9] Zhu Xiaoming, Kahn Joseph M. Communication techniques and coding for atmosphericturbulence channels[J]. J Opt Fiber Communication Rep, 2007(4): 363-405.
[10]
[11] Chen Dan, Ke Xizheng, Qu Fei. Research on homomorphism filtering technology of wireless optical communication based on four frequency shift keying modulation[J]. Chinese Journal of Lasers, 2011, 38(2): 1-5. (in Chinese)
[12]
[13] Heba Yuksel, Stuart Milner, Davis Christopher C. Apertureaveragingfor optimizing receiver design and system performanceon free-space optical communication links[J]. J Opt Networking, 2005, 4(8): 462-474.
[14]
[15]
[16] Chen Chunyi, Yang Huamin, Lin Jiangkuai. Performance analysis of large-aperture receiving and selection of aperture size in atmospheric optical communications[J]. Chinese Journal of Lasers, 2009, 36(11): 2957 -2961. (in Chinese)
[17]
[18] Ke Xizheng, Song Peng, Pei Guoqiang. Research on multi-aperture receiving technology in wireless laser communication[J]. Journal of Optics, 2011, 31(12): 1-7. (in Chinese)
[19] Wang Jing, Tao Xiangyang. Impact of multi-beam launch on laser atmospheric transmission under turbulence effect[J]. Journal of Applied Optics, 2011, 32(1): 179-183. (in Chinese)
[20]
[21]
[22] Wang Jiangan, Zhao Yingjun, Wu Ronghua, et al. Impact of partially coherent light on the bit error rate of communication system through strong turbulence on bit error rate of laser communication system[J]. Journal of Applied Optics, 2009, 30(5): 859-863. (in Chinese)
[23] Yang Changqi, Jiang Wenhan, Rao Changhui. Bit-errorrate for free-space optical communication with tip-tilt compensa-tion[J]. Waves in Random and Complex Media, 2006, 16(3): 281-292. (in Chinese)
[24]
[25] Zhou Renzhong. Adaptive Optics[M]. Beijing: National Defense Industry Press, 1996. (in Chinese)
[26]
[27] Yang Huizhen, Cai Dongmei, Chen Bo, et al. Analysis of adaptive optics technique without a wave-front sensor and its applications in atmospheric laser communication[J]. Chinese Journal of Lasers, 2008, 35(5): 680-684. (in Chinese)
[28]
[29] Yuan Xiuhua, Zhao Ming, Zhao Yanli. Analysis of impact of turbulent atmosphere on wireless optical communication and solution[J]. Infrared and Laser Engineering, 2012, 41(2): 415-422. (in Chinese)
[30]
[31]
[32] Frida Stromqvist Vetelino, Cynthia Young, Larry Andrews. Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence[J]. Appl Opt, 2007, 46(11): 2099-2108.
[33]
[34] Liu Jian, Ke Xizheng, Zhao Li. Experimental measurement of atmospheric laser communication[J]. Acta Photonica Sinica, 2007, 36: 10-13. (in Chinese)
[35] Xu Guoliang, Zhang Xuping, Wei Junwei. Influence of atmospheric turbulence on FSO link Performance[C]//Proceeding of SPIE, 2004, 5281: 816-823.