[1] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes [J]. Applied Optics, 1983, 22(24): 3977−3982. doi:  10.1364/AO.22.003977
[2] Chen F, Brown G M, Song M. Overview of 3-D shape measurement using optical methods [J]. Optical Engineering, 2000, 39(1): 1-22.
[3] Bračun D, Sluga A. Stereo vision based measuring system for online welding path inspection [J]. Journal of Materials Processing Technology, 2015, 223: 328−336. doi:  10.1016/j.jmatprotec.2015.04.023
[4] Quan Yanming, Li Shumei, Mai Qingqun. The dimension of workpiece based on binocular vision is measured in three dimensions [J]. Optics and Precision Engineering, 2013, 21(4): 1054−1061. (in Chinese) doi:  10.3788/OPE.20132104.1054
[5] Agatston A S, Janowitz W R, Hildner F J, et al. Quantification of coronary artery calcium using ultrafast computed tomography [J]. Journal of the American College of Cardiology, 1990, 15(4): 827−832. doi:  10.1016/0735-1097(90)90282-T
[6] Brenner D J, Hall E J. Computed tomography—an increasing source of radiation exposure [J]. New England Journal of Medicine, 2007, 357(22): 2277−2284. doi:  10.1056/NEJMra072149
[7] Yuan D, Ye Feng, Yang Ling. Research on interactive 3d measurement of medical images based on VTK [J]. Computer Engineering and Design, 2008, 29(13): 3549−3550. (in Chinese)
[8] Marras W S, Lavender S A, Leurgans S E, et al. The role of dynamic three-dimensional trunk motion in occupationally-related [J]. Spine, 1993, 18(5): 617−628. doi:  10.1097/00007632-199304000-00015
[9] Moeslund T B, Granum E. A survey of computer vision-based human motion capture [J]. Computer Vision and Image Understanding, 2001, 81(3): 231−268. doi:  10.1006/cviu.2000.0897
[10] Steuer J. Defining virtual reality: Dimensions determining telepresence [J]. Journal of Communication, 1992, 42(4): 73−93. doi:  10.1111/j.1460-2466.1992.tb00812.x
[11] Gorthi S S, Rastogi P. Fringe projection techniques: whither we are? [J]. Optics and Lasers in Engineering, 2010, 48(2): 133−140. doi:  10.1016/j.optlaseng.2009.09.001
[12] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics and Lasers in Engineering, 2010, 48(2): 149−158. doi:  10.1016/j.optlaseng.2009.03.008
[13] Zuo C, Huang L, Zhang M, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review [J]. Optics and Lasers in Engineering, 2016, 85: 84−103. doi:  10.1016/j.optlaseng.2016.04.022
[14] Pan B, Kemao Q, Huang L, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry [J]. Optics Letters, 2009, 34(4): 416−418. doi:  10.1364/OL.34.000416
[15] Li S, Liu S, Zhang H. 3D shape measurement of optical free-form surface based on fringe projection[C]//Optical Measurement Systems for Industrial Inspection VⅡ. International Society for Optics and Photonics, 2011, 8082: 80822Z.
[16] Yamaguchi I, Zhang T. Phase-shifting digital holography [J]. Optics Letters, 1997, 22(16): 1268−1270. doi:  10.1364/OL.22.001268
[17] Creath K. Phase-shifting speckle interferometry [J]. Applied Optics, 1985, 24(18): 3053−3058. doi:  10.1364/AO.24.003053
[18] Gastón A A, J Matías Di Martino, Julia R A, et al. Three-dimensional profiling with binary fringes using phase-shifting interferome try algorithms [J]. Applied Optics, 2011, 50(2): 147−154. doi:  10.1364/AO.50.000147
[19] Zuo C, Feng S, Huang L, et al. Phase shifting algorithms for fringe projection profilometry: A review [J]. Optics and Lasers in Engineering, 2018, 109: 23−59. doi:  10.1016/j.optlaseng.2018.04.019
[20] Zhang T, Yamaguchi I. Three-dimensional microscopy with phase-shifting digital holography [J]. Optics Letters, 1998, 23(15): 1221−1223. doi:  10.1364/OL.23.001221
[21] Mitsuo Takeda, Hideki Ina, Seiji Kobayashi. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. Journal of the Optical Society of America, 1982, 72(1): 156−160. doi:  10.1364/JOSA.72.000156
[22] Li Jian, Su Xianyu, Guo Lurong. An improved Fourier transform profilometry for automatic measurement of 3-D object shapes [J]. Optics Engineering, 1990, 29(12): 1439−44. doi:  10.1117/12.55746
[23] Su Xianyu, Chen Wenjing. Fourier transform profilomitry: a review [J]. Optics and Lasers in Engineering, 2001, 35(5): 263−284. doi:  10.1016/S0143-8166(01)00023-9
[24] Chen K, Xi J, Yu Y. Quality-guided spatial phase unwrapping algorithm for fast three-dimensional measurement [J]. Optics Communications, 2013, 294: 139−147. doi:  10.1016/j.optcom.2013.01.002
[25] Zhang S. Absolute phase retrieval methods for digital fringe projection profilometry: A review [J]. Optics and Lasers in Engineering, 2018, 107: 28−37. doi:  10.1016/j.optlaseng.2018.03.003
[26] Wu L, Peng Q. Research and development of fringe projection-based methods in 3D shape reconstruction [J]. Journal of Zhejiang University-Science A, 2006, 7(6): 1026−1036. doi:  10.1631/jzus.2006.A1026
[27] Chen K, Xi J, Yu Y, et al. A composite quality-guided phase unwrapping algorithm for fast 3D profile measurement[C]//Optical Metrology and Inspection for Industrial Applications Ⅱ. International Society for Optics and Photonics, 2012, 8563: 856305.
[28] Geng J. Structured-light 3D surface imaging: a tutorial [J]. Advances in Optics and Photonics, 2011, 3(2): 128−160. doi:  10.1364/AOP.3.000128
[29] Saldner H O, Huntley J M. Temporal phase unwrapping: application to surface profiling of discontinuous objects [J]. Applied Optics,, 1997, 36(13): 2770−2775. doi:  10.1364/AO.36.002770
[30] Du G, Zhang C, Zhou C, et al. Iterative two-step temporal phase-unwrapping applied to high sensitivity three-dimensional profilometry [J]. Optics and Lasers in Engineering, 2016, 79: 22−28. doi:  10.1016/j.optlaseng.2015.11.006
[31] Huntley J M, Saldner H O. Shape measurement by temporal phase unwrapping: comparison of unwrapping algorithms [J]. Measurement Science and Technology, 1997, 8(9): 986. doi:  10.1088/0957-0233/8/9/005
[32] Zhu J, Zhou P, Su X, et al. Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination [J]. Optics Express, 2016, 24(25): 28549−28560. doi:  10.1364/OE.24.028549
[33] Li L L, Su X Y, Dou Y F, et al. Error analysis and algorithm design of temporal phase unwrapping [J]. Journal of Sichuan University (Natural Science Edition), 2012, 49(1): 102−108.
[34] Tian J, Peng X, Zhao X. A generalized temporal phase unwrapping algorithm for three-dimensional profilometry [J]. Optics and Lasers in Engineering, 2008, 46(4): 336−342. doi:  10.1016/j.optlaseng.2007.11.002
[35] Servin M, Padilla M, Garnica G, et al. Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry [J]. Optics and Lasers in Engineering, 2016, 87: 75−82. doi:  10.1016/j.optlaseng.2015.12.017
[36] Xu Z H, Su X Y. An algorithm of temporal phase unwrapping [J]. J Sichuan University (Natural Science Edition), 2008, 45: 537−540.
[37] Servin M, Cuevas F J. A novel technique for spatial phase-shifting interferometry [J]. Journal of Modern Optics, 1995, 42(9): 1853−1862. doi:  10.1080/09500349514551621
[38] Bothe T, Burke J, Helmers H. Spatial phase shifting in electronic speckle pattern interferometry: minimization of phase reconstruction errors [J]. Applied Optics, 1997, 36(22): 5310−5316. doi:  10.1364/AO.36.005310
[39] Bhaduri B, Mohan N K, Kothiyal M P, et al. Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS) [J]. Optics Express, 2006, 14(24): 11598−11607. doi:  10.1364/OE.14.011598
[40] Salfity M F, Ruiz P D, Huntley J M, et al. Branch cut surface placement for unwrapping of undersampled three-dimensional phase data: application to magnetic resonance imaging arterial flow mapping [J]. Applied Optics, 2006, 45(12): 2711−2722. doi:  10.1364/AO.45.002711
[41] Gutmann B, Weber H. Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing [J]. Applied Optics, 1999, 38(26): 5577−5593. doi:  10.1364/AO.38.005577
[42] Zhao M, Huang L, Zhang Q, et al. Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies [J]. Applied Optics, 2011, 50(33): 6214−6224. doi:  10.1364/AO.50.006214
[43] Zhang S, Li X, Yau S T. Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction [J]. Applied Optics, 2007, 46(1): 50−57. doi:  10.1364/AO.46.000050
[44] Kemao Q, Gao W, Wang H. Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm [J]. Applied Optics, 2008, 47(29): 5420−5428. doi:  10.1364/AO.47.005420
[45] Zhong H, Tang J, Zhang S, et al. An improved quality-guided phase-unwrapping algorithm based on priority queue [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(2): 364−368.
[46] Huntley J M, Saldner H. Temporal phase-unwrapping algorithm for automated interferogram analysis [J]. Applied Optics, 1993, 32(17): 3047−3052. doi:  10.1364/AO.32.003047
[47] Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors [J]. Applied Optics, 1999, 38(31): 6565−6573. doi:  10.1364/AO.38.006565
[48] Sansoni G, Corini S, Lazzari S, et al. Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications [J]. Applied Optics, 1997, 36(19): 4463−4472. doi:  10.1364/AO.36.004463
[49] Zheng D, Da F. Self-correction phase unwrapping method based on Gray-code light [J]. Optics and Lasers in Engineering, 2012, 50(8): 1130−1139. doi:  10.1016/j.optlaseng.2012.01.019
[50] Zheng D, Da F, Kemao Q, et al. Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter [J]. Optics Express, 2017, 25(5): 4700−4713. doi:  10.1364/OE.25.004700
[51] Yu S, Zhang J, Yu X, et al. 3D measurement using combined Gray code and dual-frequency phase-shifting approach [J]. Optics Communications, 2018, 413: 283−290. doi:  10.1016/j.optcom.2017.12.071
[52] Chen X, Xi J, Jin Y. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection [J]. Optical Engineering, 2008, 47(11): 113601. doi:  10.1117/1.3026075
[53] Nguyen H, Nguyen D, Wang Z, et al. Real-time, high-accuracy 3D imaging and shape measurement [J]. Applied Optics, 2015, 54(1): A9−A17. doi:  10.1364/AO.54.0000A9
[54] Chen L, Deng W Y, Lou X P. Phase unwrapping method base on multi-frequency interferometry [J]. Optical Technique, 2012, 38(1): 73−78. doi:  10.3788/GXJS20123801.0073
[55] Koo J, Cho T. A 3D measurement system based on a double frequency method using Fourier transform profilometry [J]. Journal of the Korea Institute of Information and Communication Engineering, 2015, 19(6): 1485−1492. doi:  10.6109/jkiice.2015.19.6.1485
[56] Li B, Yang J, Wu H, et al. A new three-dimensional shape measurement method based on double-frequency fringes[C]//AOPC 2015: Optical Test, Measurement, and Equipment. International Society for Optics and Photonics, 2015, 9677: 96770H.
[57] Zhao H, Zhang C. Phase unwrapping algorithm based on double-frequency fringe projection and fringe background[C]//The International Conference on Photonics and Optical Engineering (icPOE 2014). International Society for Optics and Photonics, 2015, 9449: 944905.
[58] Wang Y, Laughner J I, Efimov I R, et al. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique [J]. Optics Express, 2013, 21(5): 5822−5832. doi:  10.1364/OE.21.005822
[59] Su W H, Liu H. Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities [J]. Optics Express, 2006, 14(20): 9178−9187. doi:  10.1364/OE.14.009178
[60] Ding Y, Xi J, Yu Y, et al. Frequency selection in absolute phase maps recovery with two frequency projection fringes [J]. Optics Express, 2012, 20(12): 13238−13251. doi:  10.1364/OE.20.013238
[61] Li Z, Shi Y, Wang C. Real-time complex object 3D measurement[C]//2009 International Conference on Computer Modeling and Simulation. IEEE, 2009: 191-193.
[62] Huang Y, Li Z, Shi Y. 3D measurement technology based on multifrequency heterodyne principle [J]. New Technology & New Process, 2008, 12: 37−40.
[63] Liu S, Feng W, Zhang Q, et al. Three-dimensional shape measurement of small object based on tri-frequency heterodyne method[C]//2015 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems. International Society for Optics and Photonics, 2015, 9623: 96231C.
[64] Lei Z, Wang C, Zhou C. Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation [J]. Optics and Lasers in Engineering, 2015, 66: 249−257. doi:  10.1016/j.optlaseng.2014.09.018
[65] Wang Z. Three-dimensional surface imaging by multi-frequency phase shift profilometry with angle and pattern modeling for system calibration [J]. Measurement Science and Technology, 2016, 27(8): 085404. doi:  10.1088/0957-0233/27/8/085404
[66] Hyun J S, Zhang S. Enhanced two-frequency phase-shifting method [J]. Applied Optics, 2016, 55(16): 4395−4401. doi:  10.1364/AO.55.004395
[67] Li Z, Wang C. A prototype system for high precision 3D measurement based on grating method[C]//Optical Design and Testing Ⅲ. International Society for Optics and Photonics, 2007, 6834: 683442.
[68] Huang H Q, Fang X Z, Zhang W. Defocusing rectified multi-frequency patterns for high-precision 3D measurement [J]. Measurement Science and Technology, 2014, 25(3): 035009. doi:  10.1088/0957-0233/25/3/035009
[69] Lou X, Lv N, Sun P, et al. Heterodyne multi-frequency method for 3D profile measurement[C]//Fourth International Seminar on Modern Cutting and Measurement Engineering. International Society for Optics and Photonics, 2011, 7997: 799724.
[70] Xiao Z, Chee O, Asundi A. An accurate 3D inspection system using heterodyne multiple frequency phase-shifting algorithm [J]. Physics Procedia, 2011, 19: 115−121. doi:  10.1016/j.phpro.2011.06.134
[71] Yao Y, Guo J. The 3D optical measurement system based on Multi-frequency Heterodyne Principle[C]//2012 7th International Conference on Computing and Convergence Technology (ICCCT). IEEE, 2012: 1130-1134.
[72] Wang L, Song L, Zhong L J, et al. Multi-frequency heterodyne phase shift technology in 3-D measurement[C]//Advanced Materials Research. Trans Tech Publications, 2013, 774: 1582−1585.
[73] Xu Y, Jia S, Luo X, et al. Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities [J]. Optics Communications, 2013, 288: 27−30. doi:  10.1016/j.optcom.2012.09.042
[74] Jiang C, Jia S, Dong J, et al. Multi-frequency color-marked fringe projection profilometry for fast 3D shape measurement of complex objects [J]. Optics Express, 2015, 23(19): 24152−24162. doi:  10.1364/OE.23.024152
[75] Zhang X, Zhang Z, Cheng W. Iterative projector calibration using multi-frequency phase-shifting method[C]//2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). IEEE, 2015: 1-6.
[76] Song L M, Chen C M, Zhang L, et al. High precision global phase unwrapping method used in the multi-frequency 3D measurement [J]. Opt Electron Eng, 2012, 39(12): 18−25.
[77] Zhang S, Yau S T. High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method [J]. Optics Express, 2006, 14(7): 2644−2649. doi:  10.1364/OE.14.002644
[78] Huang P S, Zhang S. Fast three-step phase-shifting algorithm [J]. Applied Optics, 2006, 45(21): 5086−5091. doi:  10.1364/AO.45.005086
[79] Li Z, Shi Y, Wang C, et al. Complex object 3D measurement based on phase-shifting and a neural network [J]. Optics Communications, 2009, 282(14): 2699−2706. doi:  10.1016/j.optcom.2009.04.055
[80] Huang P, Zhang S. 3d shape measurement system and method including fast three-step phase shifting, error compensation and calibration: U.S. Patent Application 11/552, 520[P]. 2007-5-24.
[81] Zhang S. Composite phase-shifting algorithm for absolute phase measurement [J]. Optics and Lasers in Engineering, 2012, 50(11): 1538−1541. doi:  10.1016/j.optlaseng.2012.06.005
[82] Zhang S. High-resolution 3D profilometry with binary phase-shifting methods [J]. Applied Optics, 2011, 50(12): 1753−1757. doi:  10.1364/AO.50.001753
[83] Yang F, He X. Two-step phase-shifting fringe projection profilometry: intensity derivative approach [J]. Applied Optics, 2007, 46(29): 7172−7178. doi:  10.1364/AO.46.007172
[84] Zhang S. Digital multiple wavelength phase shifting algorithm[C]//Optical Inspection and Metrology for Non-Optics Industries. International Society for Optics and Photonics, 2009, 7432: 74320N.
[85] Wang Y, Liu L, Wu J, et al. Dynamic three-dimensional shape measurement with a complementary phase-coding method [J]. Optics and Lasers in Engineering, 2020, 127: 105982. doi:  10.1016/j.optlaseng.2019.105982
[86] Wang Y, Zhang S. Novel phase-coding method for absolute phase retrieval [J]. Optics Letters, 2012, 37(11): 2067−2069. doi:  10.1364/OL.37.002067
[87] Zheng D, Da F. Phase coding method for absolute phase retrieval with a large number of codewords [J]. Optics Express, 2012, 20(22): 24139−24150. doi:  10.1364/OE.20.024139
[88] Zhou C, Liu T, Si S, et al. An improved stair phase encoding method for absolute phase retrieval [J]. Optics and Lasers in Engineering, 2015, 66: 269−278. doi:  10.1016/j.optlaseng.2014.09.011
[89] Li B, Fu Y, Zhang J, et al. A fast three-dimensional shape measurement method based on color phase coding [J]. Optik, 2016, 127(3): 1011−1015. doi:  10.1016/j.ijleo.2015.10.036
[90] Li B, Fu Y, Zhang J, et al. Period correction method of phase coding fringe [J]. Optical Review, 2015, 22(5): 717−723. doi:  10.1007/s10043-015-0137-y
[91] Zeng Z, Li B, Fu Y, et al. Stair phase-coding fringe plus phase-shifting used in 3D measuring profilometry [J]. Journal of the European Optical Society-Rapid Publications, 2016, 12(1): 9. doi:  10.1186/s41476-016-0013-9
[92] Chen X, Wang Y, Wang Y, et al. Quantized phase coding and connected region labeling for absolute phase retrieval [J]. Optics Express, 2016, 24(25): 28613−28624. doi:  10.1364/OE.24.028613
[93] Xing Y, Quan C, Tay C J. A modified phase-coding method for absolute phase retrieval [J]. Optics and Lasers in Engineering, 2016, 87: 97−102. doi:  10.1016/j.optlaseng.2016.03.018
[94] Zhang Q, Su X, Xiang L, et al. 3-D shape measurement based on complementary Gray-code light [J]. Optics and Lasers in Engineering, 2012, 50(4): 574−579. doi:  10.1016/j.optlaseng.2011.06.024
[95] Wang Y, Chen X, Huang L, et al. Improved phase-coding methods with fewer patterns for 3D shape measurement [J]. Optics Communications, 2017, 401: 6−10. doi:  10.1016/j.optcom.2017.05.024
[96] Hyun J S, Zhang S. Superfast 3D absolute shape measurement using five binary patterns [J]. Optics and Lasers in Engineering, 2017, 90: 217−224. doi:  10.1016/j.optlaseng.2016.10.017
[97] Cheng T, Du Q, Jiang Y, et al. Absolute phase retrieval via color phase-coding [J]. Optik, 2017, 140: 1056−1062. doi:  10.1016/j.ijleo.2017.05.017
[98] Wang L, Chen Y, Han X, et al. A 3D shape measurement method based on novel segmented quantization phase coding [J]. Optics and Lasers in Engineering, 2019, 113: 62−70. doi:  10.1016/j.optlaseng.2018.10.004
[99] Zhou H, Gao J, Hu H, et al. Fast phase-measuring profilometry through composite color-coding method [J]. Optics Communications, 2019, 440: 220−228. doi:  10.1016/j.optcom.2019.02.024
[100] Chen Y, Han X, Zhang P, et al. 3D measurement method based on S-shaped segmental phase encoding [J]. Optics and Laser Technology, 2020, 121: 105781. doi:  10.1016/j.optlastec.2019.105781
[101] Caspi D, Kiryati N, Shamir J. Range imaging with adaptive color structured light [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(5): 470−480. doi:  10.1109/34.682177
[102] Fu Y, Wang Y, Wan M, et al. Three-dimensional profile measurement of the blade based on surface structured light [J]. Optik, 2013, 124(18): 3225−3229. doi:  10.1016/j.ijleo.2012.10.003
[103] Han Xu, Wang Lin, Fu Yanjun. Phase unwrapping method of dual frequency heterodyne combined with phase coding [J]. Infrared and Laser Engineering, 2019, 48(9): 09110031. (in Chinese)