[1]
[2] Piper J A, Pask H M. Crystalline Raman lasers [J]. IEEE J Sel Top Quantum Elec, 2007, 13(3): 694-704.
[3] Grabitchikov A S, Linsinetskii V A, Orlovich V A, et al. Multimode pumped continuous-wave solid-state Raman laser[J]. Opt Lett, 2004, 29(21): 2524-2526.
[4]
[5] Pask H M. Continuous-wave, all-solid-state intracavity Raman laser[J]. Opt Lett, 2005, 30(18): 2454-2456.
[6]
[7] Dekker P, Pask H M, Spence D J, et al. Continuous-wave,intracavity doubled, self-Raman laser operation in Nd: GdVO4 at 586.5nm [J]. Opt Express, 2007, 15(11): 7038-7046.
[8]
[9]
[10] Lee A J, Pask H M, Piper J A, et al. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission[J]. Opt Express, 2010, 18 (6): 5984-5992
[11]
[12] LYanfei, Zhang Xihe, Li Shutao, et al. All-solid-state CW sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal [J]. Opt Lett, 2010, 35 (17): 2964-2966.
[13] Spence D J, Dekker P, Pask H M. Modeling of continuous wave intracavity raman lasers [J]. IEEE J Sel Top Quantum Elec, 2007, 13(3): 756-763.
[14]
[15]
[16] Demidovich A A, Apanasevich P A, Batay L E, et al. Sub-nanosecond microchip laser with intracavity Raman conversion[J]. Appl Phys B, 2003, 76: 509-514.
[17]
[18] Ding Shuanghong, Zhang Xingyu, Wang Qingpu, et al. Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal [J]. IEEE J Quantum Elec, 2006, 42 (9): 927-933.
[19]
[20] Ding Shuanghong, Zhang Xingyu, Wang Qingpu, et al. Numerical modelling of passively Q-switched intracavity Raman lasers [J]. J Phys D: Appl Phys, 2007, 40: 736-2747.
[21] Cong Zhenhua, Zhang Xingyu, Wang Qingpu, et al. Theoretical and experimental study on the Nd:YAG/BaWO4/ KTP yellow laser generating 8.3 W output power [J]. Opt Express, 2010, 18(7): 12111-12118.