[1] Ritchie R H. Plasma losses by fast electrons in thin films[J].Phys Rev, 1957, 106(5): 874-881.
[2]
[3] Mark I Stockman. Nanoscience: dark-hot resonances [J]. Nature, 2010, 467(7317): 541-542 .
[4]
[5] Ghaemi H F, Tineke Thio, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11): 6779-6782.
[6]
[7]
[8] Zhu J, Li J, Zhao J. Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle[J]. Applied Physics Letters, 2011, 99(10): 101901-101901-3.
[9] Valmorra F, Brǒll M, Schwaiger S, et al. Strong coupling between surface plasmon polariton and laser dye rhodamine 800[J]. Applied Physics Letters, 2011, 99(5): 051110-051110-3.
[10]
[11]
[12] Aihara T, Nakagawa K, Fukuhara M, et al. Optical frequency signal detection through surface plasmon polaritons[J]. Applied Physics Letters, 2011, 99(4): 1-6.
[13] Wang Shaomin, Lin Qiang, Zhan Daomu, et al. Zero field truncation of airy pattern and its transformation property[J]. Journal of OptoelectronicsLaser, 2000, 11(2): 191-193
[14]
[15]
[16] D Lanzillotti-Kimura N, Fainstein A, Perrin B, et al. Theory of coherent generation and detection of THz acoustic phonons using optical microcavities[J]. Physical Review B, 2011, 84(6):7615-7619.
[17]
[18] Wang Yali, Shi Yishi, Hou Bihui, et al. THz and infrared absorption spectra of Zn3 BP07 crystal[J]. Journal of Synthetic Crystals, 2010, 39(4): 838-841.
[19] Walters R J, van Loon R V A, Brunets I, et al. A silicon-based electrical source of surface plasmon polaritons[J]. Nature Materials, 2009: 21-25.
[20]
[21] Gao Guangyu. The study of coherence of surface plasmon polaritons[D]. Tianjin: Nankai University, 2010.