[1] Tsuchizawa T, Yamada K, Morita H, et al. Microphotonics devices based on silicon microfabrication technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(1): 232-240.
[2]
[3]
[4] Almeida V R, Xu Q, Lipson M, et al. Guiding and confining light in void nanostructure[J]. Virtual Journal of Nanoscale Science and Technology, 2004, 29(11): 1209-1211.
[5] Thyln L, Qiu M, Anand S. Photonic crystals-A step towards integrated circuits for photonics[J]. Chem Phys Chem, 2004, 5(9): 1268- 1283.
[6]
[7] Goto T, Katagiri Y, Fukuda H, et al. Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates[J]. Applied Physics Letters, 2004, 84(6): 852-854.
[8]
[9]
[10] Anu Chandran, Edward S Barnard, Justin S White, et al. Metal- dielectric-metal surface plasmon-polariton resonators[J]. Phys Rev B, 2012, 85(8): 085416.
[11]
[12] Pile D F, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface[J]. Optics Letters, 2004, 29(10): 1069-1071.
[13]
[14] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.
[15]
[16] Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2008, 2(8): 496-500.
[17]
[18] Sun R, Dong P, Feng N N, et al. Horizontal single and multiple slot waveguides: optical transmission at lambda=1550 nm[J]. Optics Express, 2007, 15(26): 17967-17972.
[19]
[20] Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon[J]. Opt Lett, 2006, 31(14): 2133-2135.
[21] Dai D, He S. Low-loss hybrid plasmonic waveguide with double low- index nano-slots[J]. Optics Express, 2010, 18(17): 17958-17966.
[22]
[23] Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J]. Optics Express, 2009, 17 (19): 16646-16653.