[1]
[2] Favro L D, Han X, Ouyang Z, et al. Infrared imaging of defects heated by a sonic pulse[J]. Review of Scientific Instruments, 2000, 71(6): 2418-2421.
[3] Renshaw J, Chen J, Holland S, et al. The sources of heat generation in vibrothermography[J]. NDTE International, 2011, 44: 736-739.
[4]
[5]
[6] Mian A, Han X, Islam S, et al. Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique[J]. Composites Science and Technology, 2004, 64(5): 657-666.
[7] Han X, Islam S, Newaz G, et al. Finite element modeling of the heating of cracks during sonic infrared imaging[J]. Journal of Applied Physics, 2006, 99(7): 074905.
[8]
[9] Zhang D, Han X, Newaz G, et al. Modeling turbine blade crack detection in sonic IR imaging with a method of creating flat crack surface in finite element analysis[C]//AIP Conference Proceeding, 2012, 1430: 527-532.
[10]
[11]
[12] Chen Zhaojiang, Zhang Shuyi. Finite element analysis of superharmonic and subharmonic vibrations of plates excited by intensive ultrasonic pulses[J]. Acta Acustica, 2011, 36(2): 102-112. (in Chinese)
[13] Chen Zhaojiang, Zheng Jiang, Zhang Shuyi. Finite element modeling of heating phenomena of cracks Excited by High-intensive Ultrasonic Pulses[J]. Chinese Physics B, 2010, 19(11): 118104.
[14]
[15] Qin Lei, Liu Junyan, Gong Jinlong, et al. Testing surface crack defects of sheet metal with ultrasonic lock-in thermography[J]. Infrared and Laser Engineering, 2013, 42(5): 1123-1130. (in Chinese)