[1] Liu Yuan, Duan Xidong, Shin Hyeon-Jin, et al. Promises and prospects of two-dimensional transistors [J]. Nature, 2021, 591(7848): 43-53. doi:  10.1038/s41586-021-03339-z
[2] Liu Chunsen, Chen Huawei, Wang Shuiyuan, et al. Two-dimensional materials for next-generation computing technologies [J]. Nature Nanotechnology, 2020, 15(7): 545-557. doi:  10.1038/s41565-020-0724-3
[3] Akinwande Deji, Huyghebaert Cedric, Wang Ching-Hua, et al. Graphene and two-dimensional materials for silicon technology [J]. Nature, 2019, 573(7775): 507-518. doi:  10.1038/s41586-019-1573-9
[4] Liu Yuan, Huang Yu, Duan Xiangfeng, et al. Van der Waals integration before and beyond two-dimensional materials [J]. Nature, 2019, 567(7748): 323-333. doi:  10.1038/s41586-019-1013-x
[5] Splendiani Andrea, Sun Liang, Zhang Yuanbo, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Letters, 2010, 10(4): 1271-1275. doi:  10.1021/nl903868w
[6] Mak Kin Fai, Lee Changgu, Hone James, et al. Atomically thin MoS2: A new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805. doi:  10.1103/PhysRevLett.105.136805
[7] Bernardi Marco, Palummo Maurizia, Grossman Jeffrey C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials [J]. Nano Letters, 2013, 13(8): 3664-3670. doi:  10.1021/nl401544y
[8] Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films [J]. Science, 2013, 340(6138): 1311-4. doi:  10.1126/science.1235547
[9] Li Yilei, Chernikov Alexey, Zhang Xian, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2 [J]. Physical Review B, 2014, 90(20): 205422. doi:  10.1103/PhysRevB.90.205422
[10] Jariwala Deep, Davoyan Artur R, Tagliabue Giulia, et al. Near-unity absorption in van der waals semiconductors for ultrathin optoelectronics [J]. Nano Letters, 2016, 16(9): 5482-5487. doi:  10.1021/acs.nanolett.6b01914
[11] Zeng Hualing, Dai Junfeng, Yao Wang, et al. Valley polarization in MoS2 monolayers by optical pumping [J]. Nature Nanotechnology, 2012, 7(8): 490-493. doi:  10.1038/nnano.2012.95
[12] Mak Kin Fai, He Keliang, Shan Jie, et al. Control of valley polarization in monolayer MoS2 by optical helicity [J]. Nature Nanotechnology, 2012, 7(8): 494-498. doi:  10.1038/nnano.2012.96
[13] Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths [J]. Science, 2016, 354(6308): 99-102. doi:  10.1126/science.aah4698
[14] Shen Pin-Chun, Su Cong, Lin Yuxuan, et al. Ultralow contact resistance between semimetal and monolayer semiconductors [J]. Nature, 2021, 593(7858): 211-217. doi:  10.1038/s41586-021-03472-9
[15] Akinwande Deji. Petrone nicholas and hone james two-dimensional flexible nanoelectronics [J]. Nature Communications, 2014, 5(1): 5678. doi:  10.1038/ncomms6678
[16] Yao Jiandong,Yang Guowei. 2D group 6 transition metal dichalcogenides toward wearable electronics and optoelectronics [J]. Journal of Applied Physics, 2020, 127(3): 030902. doi:  10.1063/1.5140795
[17] Cai Sa, Xu Xiaojie, Yang Wei, et al. Materials and designs for wearable photodetectors [J]. Advanced Materials, 2019, 31(18): 1808138. doi:  10.1002/adma.201808138
[18] Konstantatos Gerasimos. Current status and technological prospect of photodetectors based on two-dimensional materials [J]. Nature Communications, 2018, 9(1): 5266. doi:  10.1038/s41467-018-07643-7
[19] Lan Changyong, Shi Zhe, Cao Rui, et al. 2D materials beyond graphene toward Si integrated infrared optoelectronic devices [J]. Nanoscale, 2020, 12(22): 11784-11807. doi:  10.1039/D0NR02574G
[20] Koppens F H L, Mueller T, Avouris Ph, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793. doi:  10.1038/nnano.2014.215
[21] Guo Yanan, Liu Dong, Miao Chengcheng, et al. Ambipolar transport in Ni-catalyzed InGaAs nanowire field-effect transistors for near-infrared photodetection [J]. Nanotechnology, 2021, 32(14): 145203. doi:  10.1088/1361-6528/abd358
[22] Gao Zhaofeng, Sun Jiamin, Han Mingming, et al. Recent advances in Sb-based III–V nanowires [J]. Nanotechnology, 2019, 30(21): 212002. doi:  10.1088/1361-6528/ab03ee
[23] Sun Jiamin, Han Mingming, Gu Yu, et al. Recent advances in group III–V nanowire infrared detectors [J]. Advanced Optical Materials, 2018, 6(18): 1800256. doi:  10.1002/adom.201800256
[24] Guo Yanan, Lu Dong, Miao Chengcheng, et al. Recent advances in semiconductor nanowires infrared photodetectors (invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211010. (in Chinese) doi:  10.3788/IRLA20211010
[25] Barve A V, Lee S J, Noh S K, et al. Review of current progress in quantum dot infrared photodetectors [J]. Laser & Photonics Reviews, 2010, 4(6): 738-750.
[26] Konstantatos Gerasimos, Badioli Michela, Gaudreau Louis, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain [J]. Nature Nanotechnology, 2012, 7(6): 363-368. doi:  10.1038/nnano.2012.60
[27] Goossens Stijn, Navickaite Gabriele, Monasterio Carles, et al. Broadband image sensor array based on graphene–CMOS integration [J]. Nature Photonics, 2017, 11(6): 366-371. doi:  10.1038/nphoton.2017.75
[28] Chen Yunfeng, Wang Yang, Wang Zhen, et al. Unipolar barrier photodetectors based on van der Waals heterostructures [J]. Nature Electronics, 2021, 4(5): 357-363. doi:  10.1038/s41928-021-00586-w
[29] Xie Ying, Liang Fei, Wang Dong, et al. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy [J]. Advanced Materials, 2018, 30(50): 1804858. doi:  10.1002/adma.201804858
[30] Huang Zhongzheng, Zhang Tianfu, Liu Junku, et al. Amorphous MoS2 photodetector with ultra-broadband response [J]. ACS Applied Electronic Materials, 2019, 1(7): 1314-1321. doi:  10.1021/acsaelm.9b00247
[31] Wang Haoyun, Li Zexin, Li Dongyan, et al. Van der waals integration based on two-dimensional materials for high-performance infrared photodetectors [J]. Advanced Functional Materials, 2021, 31(30): 2103106. doi:  10.1002/adfm.202103106
[32] Wu Jiangbin, Wang Nan, Yan Xiaodong, et al. Emerging low-dimensional materials for mid-infrared detection [J]. Nano Research, 2021, 14(6): 1863-1877. doi:  10.1007/s12274-020-3128-7
[33] An Junru, Wang Bin, Shu Chang, et al. Research development of 2D materials based photodetectors towards mid-infrared regime [J]. Nano Select, 2021, 2(3): 527-540. doi:  10.1002/nano.202000237
[34] Takao Yukihiro, Asahina Hideo, Morita Akira. Electronic structure of black phosphorus in tight binding approach [J]. Journal of the Physical Society of Japan, 1981, 50(10): 3362-3369.
[35] Hu Zehua, Niu Tianchao, Guo Rui, et al. Two-dimensional black phosphorus: its fabrication, functionalization and applications [J]. Nanoscale, 2018, 10(46): 21575-21603. doi:  10.1039/C8NR07395C
[36] Li Likai, Yu Yijun, Ye Guojun, et al. Black phosphorus field-effect transistors [J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi:  10.1038/nnano.2014.35
[37] Chen Xiaolong, Lu Xiaobo, Deng Bingchen, et al. Widely tunable black phosphorus mid-infrared photodetector [J]. Nature Communications, 2017, 8(1): 1672. doi:  10.1038/s41467-017-01978-3
[38] Deng Bingchen, Tran V, Xie Yujun, et al. Efficient electrical control of thin-film black phosphorus bandgap [J]. Nature Communications, 2017, 8(1): 14474. doi:  10.1038/ncomms14474
[39] Kim Hyungjin, Uddin Shiekh Zia, Lien Der-Hsien, et al. Actively variable-spectrum optoelectronics with black phosphorus [J]. Nature, 2021, 596(7871): 232-237. doi:  10.1038/s41586-021-03701-1
[40] Liu Bilu, Köpf Marianne, Abbas A N, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties [J]. Advanced Materials, 2015, 27(30): 4423-4429. doi:  10.1002/adma.201501758
[41] Amani Matin, Regan Emma, Bullock James, et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys [J]. ACS Nano, 2017, 11(11): 11724-11731. doi:  10.1021/acsnano.7b07028
[42] Long Mingsheng, Gao Anyuan, Wang Peng, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus [J]. Sci Adv, 2017, 3(6): e1700589. doi:  10.1126/sciadv.1700589
[43] Wang Qing Hua, Kalantar-Zadeh Kourosh, Kis Andras, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi:  10.1038/nnano.2012.193
[44] Liu Guibin, Xiao Di, Yao Yugui, et al. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides [J]. Chem Soc Rev, 2015, 44(9): 2643-63. doi:  10.1039/C4CS00301B
[45] Manzeli Sajedeh, Ovchinnikov Dmitry, Pasquier Diego, et al. 2D transition metal dichalcogenides [J]. Nature Reviews Materials, 2017, 2(8): 17033. doi:  10.1038/natrevmats.2017.33
[46] Wang Feng, Wang Zhenxing, Yin Lei, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection [J]. Chem Soc Rev, 2018, 47(16): 6296-6341. doi:  10.1039/C8CS00255J
[47] Sun Zhenhua, Chang Haixin. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology [J]. ACS Nano, 2014, 8(5): 4133-4156.
[48] Bernardi Marco, Ataca Can, Palummo Maurizia, et al. Optical and electronic properties of two-dimensional layered materials [J]. Nanophotonics, 2017, 6(2): 479-493. doi:  10.1515/nanoph-2015-0030
[49] Puotinen D, Newnham R. E. The crystal structure of MoTe2 [J]. Acta Crystallographica, 1961, 14(6): 691-692. doi:  10.1107/S0365110X61002084
[50] Lezama Ignacio Gutiérrez, Arora Ashish, Ubaldini Alberto, et al. Indirect-to-direct band gap crossover in few-layer MoTe2 [J]. Nano Letters, 2015, 15(4): 2336-2342. doi:  10.1021/nl5045007
[51] Huang Hai, Wang Jianlu, Hu Weida, et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect [J]. Nanotechnology, 2016, 27(44): 445201. doi:  10.1088/0957-4484/27/44/445201
[52] You Jiawen, Yu Ye, Cai Kai, et al. Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection [J]. Nano Research, 2020, 13(6): 1636-1643. doi:  10.1007/s12274-020-2786-9
[53] Guo G Y, Liang W Y. The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2 [J]. Journal of Physics C: Solid State Physics, 1986, 19(7): 995-1008. doi:  10.1088/0022-3719/19/7/011
[54] Yu Xuechao, Yu Peng, Wu Di, et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor [J]. Nature Communications, 2018, 9(1): 1545. doi:  10.1038/s41467-018-03935-0
[55] Grønvold F, Røst E. The crystal structure of PdSe2 and PdS2 [J]. Acta Crystallographica, 1957, 10(4): 329-331. doi:  10.1107/S0365110X57000948
[56] Chow Wai Leong, Yu Peng, Liu Fucai, et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics [J]. Advanced Materials, 2017, 29(21): 1602969. doi:  10.1002/adma.201602969
[57] Oyedele Akinola D, Yang Shize, Liang Liangbo, et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics [J]. Journal of the American Chemical Society, 2017, 139(40): 14090-14097. doi:  10.1021/jacs.7b04865
[58] Zhang George, Amani Matin, Chaturvedi Apoorva, et al. Optical and electrical properties of two-dimensional palladium diselenide [J]. Applied Physics Letters, 2019, 114(25): 253102. doi:  10.1063/1.5097825
[59] Liang Qijie, Wang Qixing, Zhang Qian, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2 [J]. Advanced Materials, 2019, 31(24): 1807609.
[60] Mak Chun Hin, Lin Shenghuang, Rogée Lukas, et al. Photoresponse of wafer-scale palladium diselenide films prepared by selenization method [J]. Journal of Physics D: Applied Physics, 2019, 53(6): 065102.
[61] Xu Weiting, Jiang Jiayang, Ma Huifang, et al. Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors [J]. Nano Research, 2020, 13(8): 2091-2097. doi:  10.1007/s12274-020-2815-8
[62] Lu Lisyuan, Chen Guanhao, Cheng Huiyu, et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals [J]. ACS Nano, 2020, 14(4): 4963-4972. doi:  10.1021/acsnano.0c01139
[63] Gu Yiyi, Cai Hui, Dong Jichen, et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition [J]. Advanced Materials, 2020, 32(19): 1906238. doi:  10.1002/adma.201906238
[64] Von Hippel A. Structure and conductivity in the vib group of the periodic system [J]. The Journal of Chemical Physics, 1948, 16(4): 372-380. doi:  10.1063/1.1746893
[65] Coker Ayodele, Lee Taesul, Das T P. Investigation of the electronic properties of tellurium--energy-band structure [J]. Physical Review B, 1980, 22(6): 2968-2975. doi:  10.1103/PhysRevB.22.2968
[66] Wang Yixiu, Qiu Gang, Wang Ruoxing, et al. Field-effect transistors made from solution-grown two-dimensional tellurene [J]. Nature Electronics, 2018, 1(4): 228-236. doi:  10.1038/s41928-018-0058-4
[67] Tong Lei, Huang Xinyu, Wang Peng, et al. Stable mid-infrared polarization imaging based on quasi-2 D tellurium at room temperature [J]. Nature Communications, 2020, 11(1): 2308. doi:  10.1038/s41467-020-16125-8
[68] Peng Meng, Xie Runzhang, Wang Zhen, et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition [J]. Sci Adv, 2021, 7(16): eabf7358. doi:  10.1126/sciadv.abf7358
[69] Wu Jinxiong, Yuan Hongtao, Meng Mengmeng, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se [J]. Nature Nanotechnology, 2017, 12(6): 530-534. doi:  10.1038/nnano.2017.43
[70] Yin Jianbo, Tan Zhenjun, Hong Hao, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals [J]. Nature Communications, 2018, 9(1): 3311. doi:  10.1038/s41467-018-05874-2
[71] Li Jie, Wang Zhenxing, Wen Yao, et al. High-Performance Near-Infrared Photodetector Based on Ultrathin Bi2O2Se Nanosheets [J]. Advanced Functional Materials, 2018, 28(10): 1706437. doi:  10.1002/adfm.201706437
[72] Gao Anyuan, Lai Jiawei, Wang Yaojia, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures [J]. Nature Nanotechnology, 2019, 14(3): 217-222. doi:  10.1038/s41565-018-0348-z
[73] Lukman Steven, Ding Lu, Xu Lei, et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection [J]. Nature Nanotechnology, 2020, 15(8): 675-682. doi:  10.1038/s41565-020-0717-2
[74] Ma P, Flöry N, Salamin Y, et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths [J]. ACS Photonics, 2018, 5(5): 1846-1852. doi:  10.1021/acsphotonics.8b00068
[75] Flöry Nikolaus, Ma Ping, Salamin Yannick, et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity [J]. Nature Nanotechnology, 2020, 15(2): 118-124. doi:  10.1038/s41565-019-0602-z
[76] Maiti R, Patil C, Saadi M A S R, et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits [J]. Nature Photonics, 2020, 14(9): 578-584. doi:  10.1038/s41566-020-0647-4
[77] Wu Jianghong, Wei Maoliang, Mu Jianglong, et al. High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits [J]. ACS Nano, 2021, 15(10): 15982-15991. doi:  10.1021/acsnano.1c04359
[78] Youngblood Nathan, Chen Che, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current [J]. Nature Photonics, 2015, 9(4): 247-252. doi:  10.1038/nphoton.2015.23
[79] Liu Xiang, Ji Xiangbing, Liu Mingju, et al. High-performance Ge quantum dot decorated graphene/zinc-oxide heterostructure infrared photodetector [J]. ACS Appl Mater Interfaces, 2015, 7(4): 2452-2458. doi:  10.1021/am5072173
[80] Kufer Dominik, Nikitskiy Ivan, Lasanta Tania, et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors [J]. Advanced Materials, 2015, 27(1): 176-180. doi:  10.1002/adma.201402471
[81] Zha Jiajia, Luo Mingcheng, Ye Ming, et al. Infrared photodetectors based on 2D materials and nanophotonics [J]. Advanced Functional Materials, 2022, 32(15): 2111970. doi:  10.1002/adfm.202111970
[82] Sefidmooye Azar Nima, Bullock James, Shrestha Vivek Raj, et al. Long-wave infrared photodetectors based on 2 D platinum diselenide atop optical cavity substrates [J]. ACS Nano, 2021, 15(4): 6573-6581. doi:  10.1021/acsnano.0c09739