[1] Hua Dengxin, Song Xiaoquan. Advances in lidar remote sensing techniques[J]. Infrared and Laser Engineering, 2008, 37(S3): 21-27. (in Chinese) 华灯鑫, 宋小全. 先进激光雷达探测技术研究进展[J].红外与激光工程, 2008, 37(S3): 21-27.
[2]
[3] Ji Chengli, Tao Zongming, Hu Shunxing, et al. Cirrus measurment using three-wavelength lidar in Hefei[J]. Acta Optica Sinica, 2014, 34(4): 0401001. 季承荔, 陶宗明, 胡顺星, 等. 三波长激光雷达探测合肥地区卷云特性[J]. 光学学报, 2014, 34(4): 0401001.
[4]
[5]
[6] Eloranta E E. High spectral resolution lidar[M]. Springer New York, 2005.
[7] Ansmann A, Muller D. Lidar and Atmospheric Aerosol Particles[M]. New York: Springer, 2005.
[8]
[9]
[10] Collis R T H, Russell P B. Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption[M]. Berlin Heidelberg: Springer, 1976: 71-151.
[11] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211-220.
[12]
[13]
[14] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 652-653.
[15]
[16] Ansmann A, Riebesell M, Weitkamp C. Measurement of atmosphere aerosol extinction profiles with a Raman lidar[J]. Optics Letters, 1990, 15(13): 746-748.
[17] Fiocco G, Benedetti-Michelangeli G, Maischberger K, et al. Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar[J]. Nature, 1971, 229(3): 78-79.
[18]
[19]
[20] Zhu Jinsham, Liu Zhisheng, Guo Jinjia. A simulation of a high spectral resolution lidar system for atmosphere temperature measurement[J]. Journal of Ocean University of Qingdao, 2005, 35(5): 863-867. (in Chinese) 朱金山, 刘智深, 郭金家. 高光谱分辨率激光雷达(HSRL)大气温度测量模拟[J]. 中国海洋大学学报(自然科学版), 2005, 35(5): 863-867.
[21] Stanford M C W. Laser scatter measurements in the mesosphere and above[J]. Atmos H Terr Phys, 1967, 29(12): 1657-1662.
[22]
[23] Hauchecorne A, Chanin M. Density and temperature profiles obtained by lidar between 35 and 70 km[J]. Geophys Res Lett, 1980, 7(8): 565-568.
[24]
[25]
[26] Kopp F, Schwiesow R L, Werner C H. Remote measurements of boundary-layer wind profiles using a CW doppler lidar[J]. J Appl Meteorol, 1984, 23(1): 148-154.
[27] Post M J, Richter R A, Hardesty R M, et al. National Oceanic and Atmospheric Administration's (NOAA) pulsed, coherent, infrared Doppler LIDAR-characteristics and data[C]//25th Annual Technical Symposium. International Society for Optics and Photonics, 1982: 60-65.
[28]
[29]
[30] Kane T J, Kozlovsky W J, Byer R L, et al. Coherent laser radar at 1.06 m using Nd:YAG lasers[J]. Optics Letters, 1987, 12: 239-241.
[31]
[32] Abreu V J. Wind measurement from an orbital platform using a lidar system with incoherent detection: an analysis[J]. Applied Optics, 1979, 18(17): 2992-2997.
[33] Souprayen C, Garnier A, Hertzog A, et al. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumenal setup, validation, and first climatological results[J]. Applied Optics, 1999, 38(12): 2410-2421.
[34]
[35] Flesia C, Korb C L. Theory of the double-dege molecular technique for Doppler lidar wind measurement[J]. Applied Optics, 1999, 38(3): 432-440.
[36]
[37] Liu Zh Sh, Chen W B, Zhang T L, et al. An incoherent Doppler lidar for ground-based atmospheric wind profiling[J]. Applied Physics B Lasers Optics, 1997, 64(5): 561-566.
[38]
[39] Korb C L, Gentry B M, Weng C Y. Edge technique: theory and application to the lidar measurement of atmospheric wind[J]. Applied Optics, 1992, 31(21): 4202-4213.
[40]
[41] She C Y, Yue J, Yan Z A, et al.. Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: B. Impact of aerosol variation on iodine vapor filter methods[J]. Applied Optics, 2007, 46(20): 4444-4454.
[42]
[43] She C Y, YueJ, Yan Z A, et al. Direct-detection Doppler wind measurements with a Cabannes-Mie lidar: a comparison between iodine vapor filter and Fabry-Perot interferometer methods[J]. Applied Optics, 2007, 46(20): 4434-4443.
[44]
[45]
[46] Xia H Y, SunD S, Yang Y H, et al. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation[J]. Applied Optics, 2007, 46(29): 7120-7131.
[47] Cheng Zhongtao, Liu Dong, Luo Jing, et al. Influences analysis of the spectral filter transmissions on the performance of high-spectral-resolution lidar[J]. Acta Optica Sinica, 2014, 34(8): 0801003. (in Chinese) 成中涛, 刘东, 罗敬, 等. 光谱滤光器透过率参数对高光谱分辨率激光雷达反演大气气溶胶光学属性精度的影响研究[J]. 光学学报, 2014, 34(8): 0801003.
[48]
[49] Shipley S T, Tracy D H, Eloranta E W, et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation[J]. Applied Optics, 1983, 22(23): 3716-3724.
[50]
[51] Sroga J T, Eloranta E W, Shipley S T, et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis[J]. Applied Optics, 1983, 22(23): 3725-3732.
[52]
[53]
[54] Hua D, Uchida M, Kobayashi T. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere[J]. Optics Letters, 2004, 29(10): 1063-1065.
[55]
[56] Imaki M, Kobayashi T. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties[J]. Applied Optics, 2005, 44(28): 6023-6030.
[57]
[58] Hoffman D S, Repasky K S, Reagan J A, et al. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters[J]. Applied Optics, 2012, 51(25): 6233-6244.
[59]
[60] Piironen P, Eloranta E W. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J]. Optics Letters, 1994, 19(3): 234-236.
[61]
[62] Shimizu H, Lee S A, She C Y. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters[J]. Applied Optics, 1983, 22(9): 1373-1381.
[63] She C Y, Alvarez R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J]. Optics Letters, 1992, 17(7): 541-543.
[64]
[65]
[66] Liu Z, Matsui I, Sugimoto N. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements[J]. Optical Engineering, 1999, 38(10): 1661-1670.
[67] Hair J W, Caldwell L M, Krueger D A, et al. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles[J]. Applied Optics, 2001, 40(30): 5280-5294.
[68]
[69]
[70] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36): 6734-6752.
[71] Liu ZH SH, Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with iodine filter[J]. Applied Optics, 2002. 41(33): 7079-7086.
[72]
[73] Liu Zh Sh, Bi D C, Song X Q, et al. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements[J]. Optics Letters, 2009, 34(18): 2712-2714.
[74]
[75] Shepherd G G. Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond[J]. Applied Optics, 1996, 35(16): 2764-2773.
[76]
[77]
[78] Gao H Y, Tang Y H, Hua D X, et al. Ground-based airglow imaging interferometer. Part 1: instrument and observation[J]. Applied Optics, 2013, 52(36): 8650-8660.
[79]
[80] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2): 1406-1420.
[81]
[82] Liu D, Yang Y Y, Cheng ZH T, et al. Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties[J]. Optics Express, 2013, 21(11): 13084-13093.
[83]
[84] Huang Hanlu, Liu Dong, Yang Yongying, et al. Design of a field-widened Michelson interferometer for a high spectral resolution lidar[J]. Chinese Journal of Lasers, 2014, 41(9): 0913003. (in Chinese) 黄寒璐, 刘东, 杨甬英, 等. 基于视场展宽迈克尔逊干涉仪的高光谱分辨率激光雷达滤光器设计研究[J]. 中国激光, 2014, 41(9): 0913003.
[85] Cheng Zh T, Liu D, Yang Y Y, et al. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer[J]. Applied Optics, 2013, 52(32): 7838-7850.
[86]
[87]
[88] Liu D, Yang Y Y, Cheng Zh T, et al. Development of the ZJU polarized near-infrared high spectral resolution lidar[C]//ISPDI 2013-Fifth International Symposium on Photoelectronic Detection and Imaging. International Society for Optics and Photonics, 2013, 8905: 89052W.
[89] Wu Songhua. Key technologies of high spectral resolution wind measurement by laser with high stability[D]. Qingdao: Ocean University of China, 2004. (in Chinese) 吴松华. 高稳定性高光谱分辨率激光测风系统关键技术[D]. 青岛: 中国海洋大学, 2004.
[90]
[91] Grund C J, Eloranta E W. University of Wisconsin high spectral resolution lidar[J]. Optical Engineering, 1991, 30(1): 6-12.
[92]
[93] Wang Tao. The mechanism and technology of the injection seeded, Q-switched laser system[D]. Xi'an: Chinese Academy of Sciences, Xi'an Institute of Optical Precision Machinery, 2001. (in Chinese) 王涛. 种子注入电光调Q激光器系统机理与技术研究[D].西安: 中国科学院西安光学精密机械研究所, 2001.
[94]
[95] Hovis F E, Rhoades M, Bumnham R L, et al. Single-frequency lasers for remote sensing[C]//Lasers and Applications in Science and Engineering. International Society for Optics and Photonics, 2004: 263-270.
[96]
[97]
[98] Fry E S, Hu Q, Li X. Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments[J]. Applied Optics, 1991, 30(9): 1015-1017.
[99] Henderson S W, Yuen E H, Fry E S. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers[J]. Optics Letters, 1986, 11(11): 715-717.
[100]
[101] Zhou J, Yu T, Bi J Z, et al. Diode Pumped Injection seeded Nd:YAG laser[J]. Chinese Optics Letters, 2006, 4(5): 292-293.
[102]
[103]
[104] Liu Dong, Yang Yongying, Cheng Zhongtao. A device and method of resonant frequency locking for Michelson interferometeric spectral filter, Chinese Patent: 2014100252869[P]. 2014-05-21. (in Chinese) 刘东, 杨甬英, 成中涛. 一种迈克尔逊干涉型光谱滤波器谐振频率锁定装置及方法,中国专利: 2014100252869[P]. 2014-05-21.
[105] Liu B Y, Esselborn M, Wirth M, et al. Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar[J]. Applied Optics, 2009, 48(27): 5143-5154.