[1] Zhang W, Li Y L, Huang Z H, et al. Research on the characteristics of fog backscattering signals for frequency modulated continuous wave laser fuze [J]. Optik, 2016, 127(20): 9046-9055. doi:  10.1016/j.ijleo.2016.06.129
[2] Zhang W, Li Y L, Huang Z H, et al. Fog backscattering interference suppression algorithm for FMCW laser fuze based on normalized frequency spectrum threshold [J]. Optik, 2017, 131: 188-193. doi:  10.1016/j.ijleo.2016.11.084
[3] Kim D, Du C H, Kim Y, et al. Optical depth and multiple scattering depolarization in liquid clouds [J]. Opt Rev, 2010, 17: 507-512. doi:  10.1007/s10043-010-0091-7
[4] Qian R C, Gui Y N, Dong W B, et al. Variable coefficient correlation detection of laser fuze echo pulses [J]. Journal of Detection & Control, 2014, 36(5): 1-5. (in Chinese)
[5] Ren H G, Yu H S, Huo L J, et al. Anti-interference of dual-wavelength laser fuze [J]. Journal of Detection & Control, 2015, 37(1): 1-4. (in Chinese)
[6] Wang F J, Chen H M. Simulation of characteristics of cloud and fog echo for pulse laser fuze [J]. Optics and Precision Engineering, 2015, 23(10): 12-18. (in Chinese)
[7] Wang F J, Chen H M, Ma C, et al. Construction of back-scattering echo caused by cloud in laser fuze [J]. Optik, 2018, 171: 153-160. doi:  10.1016/j.ijleo.2018.06.028
[8] Li J, Mei H, He C L, et al. Laser fuze anti-interference method based on pulse width modulation technique [J]. Infrared and Laser Engineering, 2020, 49(4): 0403007. (in Chinese) doi:  10.3788/IRLA202049.0403007
[9] Wang R X, Liu F, Jia X D, et al. Laser detection technology based on wavefront measurement [C]//Proceedings of SPIE, 2020, 11567: 811-816.
[10] Xu X B, Zhang H, Zhang X J, et al. Effect of plane target characteristics on ranging distribution for pulse laser detection [J]. Acta Physica Sinica, 2016, 65(21): 210601. (in Chinese) doi:  10.7498/aps.65.210601
[11] Li H S, Zhang X Q. Laser echo characteristics and detection probability calculation on the space projectile proximity fuze [J]. Optik, 2019, 183: 713-722. doi:  10.1016/j.ijleo.2019.02.108
[12] Chen S S, Zhang H, Xu X B. Echo characteristic of planar target in pulsed laser fuze detection [J]. Acta Armamentarii, 2018, 39(6): 1095-1102. (in Chinese)
[13] Liu M, Zhang G Y, An Z Y, et al. Detection method for ranging performance of IR laser rangefinder based on aerosol echo simulation [J]. Optik, 2016, 127(1): 25-29. doi:  10.1016/j.ijleo.2015.09.182
[14] Romain C, Matthew J B. Aerosol light extinction and back-scattering: A review with a lidar perspective [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262: 107492. doi:  10.1016/j.jqsrt.2020.107492
[15] Haim A, Henrik B, Preben B. Correction to the Beer-Lambert-Bouguer law for optical absorption [J]. Appl Opt, 2008, 47(29): 5354-5357. doi:  10.1364/AO.47.005354
[16] Xie J F, Yang C C, Mei Y K, et al. Full waveform decom-position of spaceborne laser based on genetic algorithm [J]. Infrared and Laser Engineering, 2020, 49(11): 20200245. (in Chinese) doi:  10.3788/IRLA20200245
[17] Wu Q Q, Qiang S Z, Wang Y Q, et al. Lidar full-waveform decomposition based on empirical mode decomposition and local-Levenberg-Marquard fitting [J]. Appl Opt, 2019, 58(29): 7943-7949. doi:  10.1364/AO.58.007943
[18] Song S L, Wang B H, Gong W, et al. A new waveform decomposition method for multispectral LiDAR [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149: 40-49. doi:  10.1016/j.isprsjprs.2019.01.014
[19] Song Q Y, Ma X C. High-resolution time delay estimation algorithms through cross-correlation post-processing [J]. IEEE Signal Processing Letters, 2021, 28: 479-483. doi:  10.1109/LSP.2020.3048843
[20] Kim I I, Mcarthur B, Korevaar E J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications [C]//Proceedings of SPIE, 2001, 4214: 26-37.
[21] Al Naboulsi M C, Sizun H, de Fornel F. Fog attenuation prediction for optical and infrared waves [J]. Optical Engineering, 2004, 43(2): 319-329. doi:  10.1117/1.1637611