[1] 杨恒泽, 刘川玉, 武京治, 等. 太赫兹矩形波导与共面波导耦合结构设计[J]. 红外与激光工程, 2022, 51(8): 20210733. (in Chinese) doi:  10.3788/IRLA20210733

Yang Hengze, Liu Chuanyu, Wu Jingzhi, et al. Design of coupled structure of terahertz rectangular waveguide and coplanar waveguide [J]. Infrared and Laser Engineering, 2022, 51(8): 20210733. (in Chinese) doi:  10.3788/IRLA20210733
[2] Ma J, Shrestha R, Adelberg J, et al. Security and eavesdropping in terahertz wireless links [J]. Nature, 2018, 563(7729): 89-93. doi:  10.1038/s41586-018-0609-x
[3] 梁美彦, 任竹云, 张存林. 太赫兹空间探测技术研究进展[J]. 激光与光电子学进展, 2019, 56(18): 180004.

Liang M, Ren Z, Zhang C. Progress of terahertz space exploration technology [J]. Laser & Optoelectronics Progress, 2019, 56(18): 180004. (in Chinese)
[4] Siegel P H. THz instruments for space [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 2957-2965. doi:  10.1109/TAP.2007.908557
[5] Humphreys K, Loughran J, Gradziel M, et al. Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering [C]//The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004 , 1: 1302-1305
[6] Xu W, Xie L, Ying Y. Mechanisms and applications of terahertz metamaterial sensing: a review [J]. Nanoscale, 2017, 9(37): 13864-13878. doi:  10.1039/C7NR03824K
[7] Beruete M, Jáuregui-lópez I. Terahertz sensing based on metasurfaces [J]. Advanced Optical Materials, 2020, 8(3): 1900721. doi:  10.1002/adom.201900721
[8] 杨君, 亓丽梅, 武利勤, 等. 太赫兹超材料生物传感器的应用研究进展[J]. 光谱学与光谱分析, 2021, 41(6): 1669.

Yang J, Qi L, Wu L, et al. Research progress of terahertz metamaterial biosensors [J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1669. (in Chinese)
[9] 孟宪睿, 张铭, 席宇鹏, 等. 复合石墨烯/硅半球的宽带太赫兹超材料吸收器[J]. 红外与激光工程, 2022, 51(6): 20210648 doi:  10.3788/IRLA20210648

Meng X, Zhang M, Xi Y, et al. Wideband terahertz metamaterial absorber for composite graphene/silicon hemispheres [J]. Infrared and Laser Engineering, 2022, 51(6): 20210648. (in Chinese) doi:  10.3788/IRLA20210648
[10] Shen S, Liu X, Shen Y, et al. Recent advances in the development of materials for terahertz metamaterial sensing [J]. Advanced Optical Materials, 2022, 10: 2101008. doi:  10.1002/adom.202101008
[11] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展[J]. 物理学报, 2020, 69(15): 158101. doi:  10.7498/aps.69.20200246

Cui T, Wu H, Liu S. Research progress of information metamaterials [J]. Acta Physica Sinica, 2020, 69(15): 158101. (in Chinese) doi:  10.7498/aps.69.20200246
[12] Tomita H, Hashimoto K, Takeya K, et al. Development of a terahertz wave circular polarizer using a 2D array of metallic helix metamaterial [J]. Optics Letters, 2021, 46(9): 2232-2235. doi:  10.1364/OL.422025
[13] Xu R, Xu X, Yang B-R, et al. Actively logical modulation of MEMS-based terahertz metamaterial [J]. Photonics Research, 2021, 9(7): 1409-1415. doi:  10.1364/PRJ.420876
[14] 黄成成, 张永刚, 梁兰菊, 等. 窄/宽带可切换的石墨烯-二氧化钒复合结构太赫兹吸波器[J]. 光学学报, 2022, 42(19): 1916001. doi:  10.3788/AOS202242.1916001

Huang C, Zhang Y, Liang L, et al. Narrow/broad band switchable terahertz absorber based on graphene and vanadium dioxide composite structure [J]. Acta Optica Sinica, 2022, 42(19): 1916001. (in Chinese) doi:  10.3788/AOS202242.1916001
[15] Yao H, Sun Z, Yan X, et al. Ultrasensitive, light-induced reversible multidimensional biosensing using THz metasurfaces hybridized with patterned graphene and perovskite [J]. Nanophotonics, 2022, 11(6): 1219-1230. doi:  10.1515/nanoph-2021-0816
[16] 梁丽, 文龙, 蒋春萍, 等. 人工微结构太赫兹传感器的研究进展[J]. 红外与激光工程, 2019, 48(2): 203001-0203001(17). doi:  10.3788/IRLA201948.0203001

Liang L, Wen L, Jiang C, et al. Research progress of terahertz sensor based on artificial microstructure [J]. Infrared and Laser Engineering, 2019, 48(2): 0203001. (in Chinese) doi:  10.3788/IRLA201948.0203001
[17] Zhang Z, Zhong C, Fan F, et al. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor [J]. Sensors Actuators B: Chemical, 2021, 330: 129315. doi:  10.1016/j.snb.2020.129315
[18] 马佳路. 一种基于 THz-TDS 技术用于食品添加剂高灵敏度区分的超材料传感器[J]. 红外与毫米波学报, 2022, 41(3): 581-588. doi:  10.11972/j.issn.1001-9014.2022.03.009

Ma J. A THz-TDS based metamaterial sensor for the sensitive distinguishment of food additives [J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 581-588. (in Chinese) doi:  10.11972/j.issn.1001-9014.2022.03.009
[19] Li J, Sun K, He W, et al. THz plasmon-induced transparency metasurfaces based on metal-graphene hybrid structure for high-sensitive amino acid disease-marker biosensing [J]. Results in Physics, 2023, 44: 106184. doi:  10.1016/j.rinp.2022.106184
[20] Sangwan V, Jariwala D, Filippone S, et al. Quantitatively enhanced reliability and uniformity of high-κ dielectrics on graphene enabled by self-assembled seeding layers [J]. Nano Letters, 2013, 13: 1162-1167. doi:  10.1021/nl3045553