[1]
[2] Ehret G, Kiemle C, Wirth M, et al. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption-line lidar: a sensitivity analysis[J]. Applied Physics B, 2008, 90: 593-608.
[3]
[4] Lisak D, Rusciano G, Sasso A. An accurate comparison-line of lineshape models on-line H2O line in the spectral region- line around 3 m [J]. Journal of Molecular Spectroscopy, 2004, 227: 162-171.
[5]
[6] Caron-line J, Durand Y, Bezy J L, et al. Performance modeling for A-SCOPE, a space borne lidar measuring atmospheric CO2[C]//SPIE, 2009, 7479: 74790E.
[7]
[8]
[9] Menzies Robert T, David Tratt. Differential laser absorption- line spectrometry for global profiling of tropospheric carbon- line dioxide: selection-line of optimum sounding frequencies for highl-precision-line measurements [J]. Applied Optics, 2003, 42(33): 6569~6577.
[10] Syed Ismail, Edward V Browell. Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis [J]. Applied Optics, 1989, 28(17): 3603-3615.
[11]
[12] Rothman L S. The HITRAN 2008 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110: 533-572.
[13]
[14]
[15] U S Standard Atmosphere. NOAA-S/T 76-1562 [S]. Washington D C: Government Printing Off-lineice, 1976.
[16] Jerome Caron-line, Yannig Durand. Operating wavelengths optimization-line for a space borne lidar measuring atmospheric CO2 [J]. Applied Optics, 2009, 48 (28): 5413-5422.