[1] 倪晓武, 沈中华, 陆建. 强激光对光电器件及半导体材料的破坏研究[J]. 光电子(激光), 1997, 第8卷(6): 487-490. DOI:10.16136 /j .joel .1997.06.018

Ni Xiaowu, Shen Zhonghua, Lu Jian. Study of laser destruction for optoelectronic device and semiconductor material [J]. Journal of Optoelectronics · Laser, 1997, 8(6): 487-490. (in Chinese) doi:  10.16136/j.joel.1997.06.018
[2] 林均仰, 舒嵘, 黄庚华, 方抗美, 闫志新. 激光对CCD及CMOS图像传感器的损伤阈值研究[J]. 红外与毫米波学报, 2008, 27(6): 475-478

Lin Junyang, Shu Rong, Huang Genghua, et al. Study on threshold of laser damage to CCD and CMOS image sensors [J]. Journal of Infrared and Millimeter Waves, 2008, 27(6): 475-478. (in Chinese)
[3] 王雪. 光电传感器激光致盲与损毁技术研究. 西安电子科技大学[D], 2018

Wang Xue. Study on laser blindness and damage technology of photoelectric sensors[D]. Xi’an: Xidian University, 2018. (in Chinese)
[4] 王昂. 可见光CMOS图像传感器的激光辐照效应研究[D]. 国防科学技术大学, 2014

Wang Ang. Research on the irradiation effects of CMOS image sensor under laser[D]. Changsha: National University of Defense Technology, 2013. (in Chinese)
[5] 朱孟真, 刘云, 米朝伟, 魏靖松, 陈霞, 田方涛, 冯苏茂, 王赛. 复合激光损伤CMOS图像传感器实验研究[J]. 红外与激光工程, 2022, 第51卷(7): 227-233. 20210537

Zhu Mengzhen, Liu Yun, Mi Chaowei, et al. Experimental study on a CMOS image sensor damaged by a composite laser [J]. Infrared and Laser Engineering, 2022, 51(7): 20210537. (in Chinese)
[6] 邵俊峰, 郭劲, 王挺峰, 郑长彬. 激光脉冲串对电荷耦合器件积累损伤效应研究[J]. 红外与激光工程, 2017, 第46卷(10): 13-18 doi:  10.3788/IRLA201746.1003002

Shao Junfeng, Guo Jin, Wang Tingfeng, et al. Damage accumulation effects of multiple laser pulses irradiated on charged coupled device [J]. Infrared and Laser Engineering, 2017, 46(10): 1003002. (in Chinese) doi:  10.3788/IRLA201746.1003002
[7] Li Mingxin, Jin Guangyong, Tan Yong. Study on CCD detector irradiated by multi-pulse laser [C]//Proceedings of SPIE, 2016, 10152: 1015207.
[8] 程勇, 朱孟真, 马云峰, 魏靖松, 刘旭, 丁方正, 谭朝勇, 陈霞, 郭延龙, 初华. 激光复合损伤机理与效应研究[J]. 红外与激光工程, 2016, 第45卷(11): 35-41 doi:  10.3788/IRLA201645.1105005

Cheng Yong, Zhu Mengzhen, Ma Yunfeng, et al. Mechanism and effects of complex laser ablation [J]. Infrared and Laser Engineering, 2016, 45(11): 1105005. (in Chinese) doi:  10.3788/IRLA201645.1105005
[9] 孙羽. 小尺寸背照式CMOS图像传感器像素结构研究[D]. 天津大学, 2012

Sun Yu. Study of pixel structure in small size backside illuminated CMOS image sensor[D]. Tianjin: Tianjin University, 2012. (in Chinese)
[10] Kagawa Y, Fujii N, Aoyagi K. et al. Novel stacked CMOS image sensor with advanced Cu2Cu hybrid bonding [C]//2016 IEEE International Electron Devices Meeting (IEDM), 2016.
[11] Christopher W, David J. Visible-band nanosecond pulsed laser damage thresholds of silicon 2D imaging arrays [J]. Sensors, 2022, 22(7): 2526. doi:  10.3390/s22072526
[12] 陈慧敏, 栗苹, 张英文, 孙建强, 李昆. CMOS图像传感器的研究新进展[J]. 半导体光电, 2006, 第27卷(6): 664-668 doi: 10.16818/j.issn1001-5868.2006.06.003

Chen Huimin, Li Ping, Zhang Yingwen, et al. Current developments of CMOS image sensors [J]. Semiconductor Optoelectronics, 2006, 27(6): 664-668. (in Chinese) doi:  10.16818/j.issn1001-5868.2006.06.003
[13] Panneerselvam A. A review on pixel performance in CMOS image sensors [J]. Journal of Advanced Research in Dynamical and Control Systems, 2017(5): 544-554.
[14] 赖莉萍, 付博, 张蓉竹.宽谱光源对 CMOS 阵列电串扰的影响[J].红外与激光工程,2017,第46卷(1): 232-237

Lai Liping, Fu Bo, Zhang Rongzhu. Effect of broadband sources on electrical crosstalk of CMOS array [J]. Infrared and Laser Engineering, 2017, 46(1): 0120005. (in Chinese)
[15] Tournier A, Leverd F, Favennec L et al. Pixel-to-pixel isolation by deep trench technology: application to CMOS image sensor [C]//International Image Sensor Workshop (IISW), 2011.
[16] 汪豪. CMOS图像传感器像元结构设计与优化[D]. 西安理工大学, 2020

Wang Hao. Design and optimization of CMOS image sensor pixel[D]. Xi’an: Xi’an University of Technology, 2020. (in Chinese)
[17] Shin Iwabuchi, Yasushi Maruyama, Yuko Ohgishi, et al. A back-illuminated high-sensitivity small-pixel color cmos image sensor with flexible layout of metal wiring [C]//IEEE International Solid State Circuits Conference - Digest of Technical Papers, 2006: 1171-1178.
[18] Shunichi Sukegawa, Taku Umebayashi, Tsutomu Nakajima, et al. A 1/4-inch 8M pixel back-illuminated stacked CMOS image sensor [C]//IEEE International Solid-State Circuits Conference-Digest of Technical Papers, 2013, 22: 484-486.
[19] Kagawa Y, Hashiguchi H, Kamibayashi T, et al. Impacts of misalignment on 1 μm pitch Cu-Cu hybrid bonding [C]//IEEE International Interconnect Technology Conference (IITC), 2020: 148-150.
[20] Oike Yusuke. Evolution of image sensor architectures with stacked device technologies [J]. IEEE Transactions on Electron Devices, 2022, 69(6): 2757-2765. doi:  10.1109/TED.2021.3097983
[21] Jansz P V, Hinckley S. Extrinsic Evolution of the Stacked Gradient Poly-homojunction Photodiode Genre [M]//Betta G F D. Advances in Photodiodes. London: IntechOpen, 2011.
[22] Wang Xinyang, Bogaerts J, Vanhorebeek G, et al. A 2.2 M CMOS image sensor for high-speed machine vision applications [C]//Sensors, Cameras, and Systems for Industrial/Scientific Applications XI, SPIE, 2010, 7536: 75360M.
[23] Okada C, Zeituni G, Uemura K, et al. A 50.1-M pixel 14-bit 250-frames/s back-illuminated stacked CMOS image sensor with column-parallel kT/C-Canceling S&H and ADC [J]. IEEE Journal of Solid-State Circuits, 2021, 56(11): 3228-3235. doi:  10.1109/JSSC.2021.3111154
[24] 郭锋. 激光对CMOS和CCD的辐照效应对比研究[D]. 国防科学技术大学, 2013

Guo Feng. Comparative study on the irradiation effect of the laser to CMOS and CCD[D]. Changsha: National University of Defense Technology, 2013. (in Chinese)
[25] 5刘传军. CMOS图像传感器的失效分析及工艺改进[D]. 天津大学, 2015

Liu Chuanjun. Failure analysis and process optimization of CMOS image sensor[D]. Tianjin: Tianjin University, 2015. (in Chinese)
[26] Han Min, Nie Jinsong, Sun Ke, et al. Experiment on the temporal evolution characteristics of a CCD multilayer structure irradiated by a 1.06 μm continuous laser [J]. Applied Optics, 2018, 57(16): 4415-4420. doi:  10.1364/AO.57.004415
[27] Théberge F, Auclair M, Daigie J, et al. Damage thresholds of silicon-based cameras for in-band and out-of-band laser expositions [J]. Applied Optics, 2022, 61(10): 2473-2482. doi:  10.1364/AO.450317
[28] 张震. 可见光CCD的激光致眩现象与机理研究[D]. 国防科学技术大学, 2010

Zhang Zhen. Laser-induced dazzling phenomena in visible light CCD and their mechanism[D]. Changsha: National University of Defense Technology, 2010. (in Chinese)
[29] 邵铭, 张雷雷, 赵威, 张乐. 高重频脉冲激光对CMOS相机饱和干扰效果研究[J]. 激光杂志, 2013, 34(6): 16-17 doi:  10.3969/j.issn.0253-2743.2013.06.006

Shao Ming, Zhang Leilei, Zhao Wei, et al. Experiment study on saturation effect of high-repetition-rate laser jamming CMOS camera [J]. Laser Journal, 2013, 34(6): 16-17. (in Chinese) doi:  10.3969/j.issn.0253-2743.2013.06.006
[30] Christopher W. How to Determine the Laser-induced Damage Threshold of 2D Imaging Arrays[M]. US: Society of Photo-Optical Instrumentation Engineers, 2019.
[31] 车进喜, 王东, 张恒伟, 张蕾蕾, 张雷, 董泽俊. 激光参数对红外成像系统干扰效果影响的实验研究[J]. 应用光学, 2011, 32(5): 992-997 doi:  10.3969/j.issn.1002-2082.2011.05.035

Che Jinxi, Wang Dong, Zhang Hengwei, et al. Influence of laser parameters on jamming effectiveness of IR imaging system [J]. Journal of Applied Optics, 2011, 32(5): 992-997. (in Chinese) doi:  10.3969/j.issn.1002-2082.2011.05.035
[32] 支悦言. 无人机视觉传感器攻击方法研究[D]. 南京信息工程大学, 2021

Zhi Yueyan. Research on attack methods for UAV visual sensors[D]. Nanjing: Nanjing University of Information Science and Technology, 2021. (in Chinese)
[33] 邵铭, 张乐, 张雷雷, 柴国庆, 胡琥香. 1.06 μm激光对CCD、CMOS相机饱和干扰效果对比研究[J]. 应用光学, 2014, 第35卷(1): 163-167

Shao Ming, Zhang Le, Zhang Leilei, et al. Comparative study on saturation effect of 1.06 μm laser jamming CCD and CMOS cameras [J]. Journal of Applied Optics, 2014, 35(1): 163-167. (in Chinese)
[34] Schwarz Bastian, Ritt Gunnar, Eberle Bernd. Impact of threshold assessment methods in laser-induced damage measurements using the examples of CCD, CMOS, and DMD [J]. Applied Optics, 2021, 60(22): F39-F49. doi:  10.1364/AO.423791
[35] Zhu Rongzhen, Wang Yanbin, Chen Qianrong, et al. Nanosecond-laser induced crosstalk of CMOS image sensor [C]//Proceedings of SPIE, 2018, 10697: 1069745.
[36] Wang Kaixuan, Li Pingxue, Yu Xuyang, et al. Experimental study on CMOS and materials irradiated by hundred-picosecond pulse laser with high repetition rate [C]//High-Power Lasers and Applications XI, 2020, 11544: 1154407.
[37] 盛良, 张震, 张检民, 徐作冬. 632.8 nm连续激光辐照可见光CMOS相机实验研究[J]. 现代应用物理, 2015, 第6卷(3): 181-185

Sheng Liang, Zhang Zhen, Zhang Jianmin, et al. Experimental study on a visible light CMOS camera irradiated by 632.8 nm CW laser [J]. Modern Applied Physics, 2015, 6(3): 181-185. (in Chinese)
[38] 王景楠, 聂劲松. 超连续谱光源辐照可见光CMOS 图像传感器的实验研究[J]. 红外与激光工程, 2017, 第46卷(1): 0106004 doi:  10.3788/IRLA20174601.106004

Wang Jingnan, Nie Jinsong. Experimental study on supercontinuum laser irradiating a visible light CMOS imaging sensor [J]. Infrared and Laser Engineering, 2017, 46(1): 0106004. (in Chinese) doi:  10.3788/IRLA20174601.106004
[39] Santos C N, Chretien S, Merella L, et al. Visible and near-infrared laser dazzling of CCD and CMOS cameras [C]//Proceedings of SPIE, 2018, 10797: 107970S.
[40] International Organization for Standardization. ISO 21254-1 (2011). Lasers and laser-related equipment—Test methods for laser-induced damage threshold—Part1: Definitions and general principles [S].Europe: IHS Global Insight, 2011.
[41] 中国国家标准化管理委员会. GB 16601.1—2017. 激光器和激光相关设备 激光损伤阈值测试方法 第一部分: 定义和总则[S]. 北京: 中国标准出版社, 2017.
[42] International Organization for Standardization. ISO 21254-3 (2011). Lasers and laser-related equipment—Test methods for laser-induced damage threshold—Part3: Assurance of laser power (energy) handling capabilities [S]. Europe: IHS Global Insight, 2011.
[43] Schwarz Bastian, Koerber Michael, Ritt Gunnar, et al. Further investigation on laser-induced damage thresholds of camera sensors and micro-optomechanical systems [C]//Technologies for Optical Countermeasures XVI, 2019.
[44] International Organization for Standardization. ISO 21254-2 (2011). Lasers and laser-related equipment—Test methods for laser-induced damage threshold—Part2: Threshold determination [S].Europe: IHS Global Insight, 2011.
[45] Hatano Hiroshi. Novel test circuit structures using selectively metal-covered transistors for a laser irradiation upset analysis [C]//12th European Conference on Radiation and Its Effects on Components and Systems, 2011.
[46] 李泽文. 毫秒激光对硅及硅基光电探测器损伤机理研究[D]. 南京理工大学, 2015.

Li Zewen. Research on the damage mechanisms of silicon and silicon-based photodetectors irradiated by millisecond laser [D]. Nanjing: Nanjing University of Science & Technology, 2015. (in Chinese)
[47] 钟发成. 组合脉冲激光致单晶硅热力作用的数值计算[D]. 南京理工大学, 2017

Zhong Facheng. Numerical calculation of thermal effects on single crystal silicon induced by combined pulse laser[D]. Nanjing: Nanjing University of Science & Technology, 2017. (in Chinese)
[48] 吕雪明. 组合脉冲激光致硅材料损伤机理研究[D]. 南京理工大学, 2018

Lv Xueming. Research on the damage mechanisms of silicon materials irradiated by combined millisecond and nanosecond laser[D]. Nanjing: Nanjing University of Science & Technology, 2018. (in Chinese)
[49] Pan Yunxiang, Zhang Hongchao, Chen Jun, et al. Millisecond laser machining of transparent materials assisted by nanosecond laser [J]. Optics Express, 2015, 23(2): 765-775. doi:  10.1364/OE.23.000765
[50] Lv Xueming, Pan Yunxiangjia, Jia Zhichao, et al. Through-hole energy-density threshold of silicon induced by combined millisecond and nanosecond pulsed laser [J]. AIP Advances, 2018, 8(5): 055025. doi:  10.1063/1.5024607