[1] Chang C I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification [M]. New York: Plenum, 2003.
[2]
[3]
[4] Lin Yurong, Wang Qiang. Hyperspectral image classification based on adaptive weight coefficient based on kernel method[J]. Infrared and Laser Engineering, 2011, 40(12): 2535- 2539. (in Chinese) 林玉荣, 王强. 基于自适应权系数核方法的超光谱图像分 类[J]. 红外与激光工程, 2011, 40 (12): 2535-2539.
[5]
[6] Jolliffe L.T. Principal Component Analysis[M]. 2nd ed. New York: Springer, 2002.
[7]
[8] Sam T R, Lawrence K S. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290 (5500): 2323-2326.
[9]
[10] Tenenbaum J B, De Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
[11]
[12] Bachmann C M, Ainsworth T L, Fusina R A. Exploiting manifold geometry in hyperspectral imagery [J]. IEEE Trans Geosci Remote Sens, 2005, 43(3): 441-454.
[13]
[14] Wei Feng, He Mingyi, Mei Shaohui. Hyperspectral data feature extraction using spatial coherence based neighborhood preserving embedding [J]. Infrared and Laser Engineering, 2012, 41(5): 1249-1254. (in Chinese) 魏峰, 何明一, 梅少辉. 空间一致性邻域保留嵌入的高光谱 数据特征提取[J]. 红外与激光工程, 2012, 41(5): 1249-1254.
[15] Cover T, Hart P. Nearest neighbor pattern classification [J]. IEEE Trans on Inf Theory, 1967, 13(1): 21-27.
[16]
[17] Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Trans on Geosci Remote Sens, 2004, 42(8): 1778-1790.
[18]
[19] Chang C I, Du Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery [J]. IEEE Trans Geosci Remote Sens, 2004, 42(3): 608-619.