[1] Krupke W F, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23):2336-2338.
[2] Zhdanov B V, Maes C, Ehrenreich T, et al. Optically pumped potassium laser[J]. Opt Commun, 2007, 270(2):353-355.
[3] Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser[J]. Electron Lett, 2008, 44(9):582-583
[4] Yang Zining, Wang Hongyan, Lu Qisheng, et al. Research development of laser diode pumped alkali lasers[J]. Laser Optoelectronics Progress, 2010, 47(051405):1-9. (in Chinese)
[5] Krupke W F. Diode pumped alkali laser:US, Patent[P]. 2001, 6(643):311.
[6] Wang You, Tadashi Kasamatsu, Zheng Yujin, et al. Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array[J]. Applied Physics Letters, 2006, 88(14):141112-141114.
[7] Zhdanov B V, Shaffer M K, Knize R J. Cs laser with unstable cavity transversely pumped by multiple diode lasers[J]. Opt Express, 2009, 17(17):14767-14770.
[8] Han Juhong, Wang You, Cai He, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system:part I[J]. Opt Express, 2014, 22(11):13988-14003.
[9] Han Juhong, Wang You, Cai He, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system:part II[J]. Opt Express, 2015, 23(7):9508-9515.
[10] Jianhua Yu, Qiang Zhu, Wu Xie, et al. High-power laser diode-pumped alkali metal vapor laser[J]. Laser Optoelectronics Progress, 2006, 43(7):46-51. (in Chinese)
[11] Krupke W F. Diode Pumped Alkali Laser:[P]. US, Patent Application US 2003/0099272 Al, 2003
[12] Lin Dongfeng, Chen Shengping, Hou Jing, et al. Ultrashort pulsed fiber sources in MOPA configurations[J]. Optoelectronic Technology, 2008, 28(4):277-282. (in Chinese)
[13] Wang You, Koichi Inoue, Kan Hirofumi, et al. A MOPA with double end pumped configuration using total internal reflection1[J]. Laser Physics, 2010, 20(2):447-453.
[14] Zhdanov B V, Knize R J. Efficienct diode pumped cesium vapor amplifier[J]. Opt Commun, 2008, 281(15-16):4068-4070.
[15] Hostutler D A, Klennert W L. Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier[J]. Opt Exp, 2008, 16(11):8050-8053.
[16] Yang Z, Wang H, Lu Q, et al. Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium[J]. J Opt Soc Am B, 2011, 28(6):1353-1364.
[17] Yang Z, Wang H, Lu Q, et al. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission[J]. Opt Exp, 2011, 19(23):23118-23131.
[18] Yang J, Pan B, Yang Y, et al. Modeling of a diode side pumped cesium vapor laser MOPA system[J]. IEEE, 2014, 50(3):123-128.
[19] Pan B, Wang Y J, Zhu Q, et al. Modeling of an alkali vapor laser MOPA system[J]. Opt Commun, 2011, 284(7):1963-1966.
[20] Greg A Pitz, Andrew J Sandoval, Tiffany B Tafoya, et al. Pressure broadening and shift of the rubidium D1 transition and potassium D2 transitions by various gases with comparison to other alkali rates[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 140(2014):18-29.
[21] Beach R J, Krupke W F, Kanz V K, et al. Endpumped continuous-wave alkali vapor lasers experiment, model, andpower scaling[J]. Opt Soc Amer B, 2004, 21(12):2151-2163.
[22] Xu Yan, Chen Fei, Xie Jijiang, et al. Influence of buffer gas on performance of alkali vapor laser[J]. Infrared and Laser Engineering, 2015, 44(2):455-460. (in Chinese)