[1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
[2] Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 1999, 24(14):954-956.
[3] Hofmann W, Gawronski B, Gschwendner T, et al. A meta-analysis on the correlation between the Implicit Association Test and explicit self-report measures[J]. Personality and Social Psychology Bulletin, 2005, 31(10):1369-1385.
[4] Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2):425-437.
[5] Heintzmann R, Jovin T M, Cremer C. Saturated patterned excitation microscopy-a concept for optical resolution improvement[J]. JOSA A, 2002, 19(8):1599-1609.
[6] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10):793-796.
[7] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645.
[8] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11):4258-4272.
[9] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845):1749-1753.
[10] Dani A, Huang B, Bergan J, et al. Superresolution imaging of chemical synapses in the brain[J]. Neuron, 2010, 68(5):843-856.
[11] Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 2013, 339(6118):452-456.
[12] Wang W, Li G W, Chen C, et al. Chromosome organization by a nucleoid-associated protein in live bacteria[J]. Science, 2011, 333(6048):1445-1449.
[13] Chen D, Yu B, Qu J, et al. Background suppression by axially selective activation in single-molecule localization microscopy[J]. Optics Letters, 2010, 35(6):886-888.
[14] Zhang Shichao, Li Simin, Yang Guang, et al. Optimization of single molecules axial localization precision in 3D stochastic optical reconstruction microscopy[J]. Acta Photonica Sinica, 2015, 44(10):1-6. 张世超, 李思黾, 杨光, 等. 3D-STORM超分辨成像中单分子轴向定位精度优化研究[J]. 光子学报, 2015, 44(10):1-6.
[15] Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier:super-resolution imaging of cells[J]. Cell, 2010, 143(7):1047-1058.
[16] Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5828):1153-1158.
[17] Jones S A, Shim S H, He J, et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 2011, 8(6):499-505.
[18] Daostorm S S. DAOSTORM:an algorithm for high-density super-resolution microscopy[J]. Nat Methods, 2011, 8:279.
[19] Ovesny M, Krzek P, Borkovec J, et al. ThunderSTORM:a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging[J]. Bioinformatics, 2014, 30(16):2389-2390.
[20] Quan T, Zhu H, Liu X, et al. High-density localization of active molecules using Structured Sparse Model and Bayesian Information Criterion[J]. Optics Express, 2011, 19(18):16963-16974.
[21] Zhu L, Zhang W, Elnatan D, et al. Faster STORM using compressed sensing[J]. Nature Methods, 2012, 9(7):721-723.
[22] Babcock H P, Moffitt J R, Cao Y, et al. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy[J]. Optics Express, 2013, 21(23):28583-28596.
[23] Du Y, Zhang H, Zhao M, et al. Faster super-resolution imaging of high density molecules via a cascading algorithm based on compressed sensing[J]. Optics Express, 2015, 23(14):18563-18576.
[24] Shen H, Gan L, Newman N, et al. Spinning disk for compressive imaging[J]. Optics Letters, 2012, 37(1):46-48.
[25] Wu J, Shen X, Hu Y, et al. Snapshot compressive imaging by phase modulation[J]. Acta Photonica Sinica, 2014, 34(10):1011005.
[26] Cands E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509.
[27] Zhu L, Lee L, Ma Y, et al. Using total-variation regularization for intensity modulated radiation therapy inverse planning with field-specific numbers of segments[J]. Physics in Medicine and Biology, 2008, 53(23):6653.
[28] Neifeld M A, Ke J. Optical architectures for compressive imaging[J]. Applied Optics, 2007, 46(22):5293-5303.
[29] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[30] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
[31] Gan L. Block compressed sensing of natural images[C]//200715th International conference on digital signal processing, IEEE, 2007:403-406.
[32] Candes E J, Romberg J K. Signal recovery from random projections[C]//Electronic Imaging 2005, International Society for Optics and Photonics, 2005:76-86.
[33] Haykin S. Adaptive Filter Theory[M]. 3rd ed. NJ:Prentice-Hall, 1996.
[34] Duarte M F, Eldar Y C. Structured compressed sensing:From theory to applications[J]. IEEE Transactions on Signal Processing, 2011, 59(9):4053-4085.
[35] Xu X, Li E, Shen X, et al. Optimization of speckle patterns in ghost imaging via sparse constraints by mutual coherence minimization[J]. Chinese Optics Letters, 2015, 13(7):071101.
[36] Liu Z, Tan S, Wu J, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 2016, 6:25718.