[1] Anderson D Z, Frisch J C, Masser C S. Mirror reflectometer based on optical cavity decay time[J]. Applied Optics, 1984, 23(8):1238-1245.
[2] O'Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59(12):2544-2551.
[3] Meijer G, Boogaarts M G H, Jongma R T, et al. Coherent cavity ring down spectroscopy[J]. Chemical Physics Letters, 1994, 217(1):112-116.
[4] Cheskis S, Derzy I, Lozovsky V A, et al. Cavity ring-down spectroscopy of OH radicals in low pressure flame[J]. Applied Physics B:Lasers and Optics, 1998, 66:377-381.
[5] Peeters R, Berden G, Meijer G. Near-infrared cavity enhanced absorption spectroscopy of hot water and OH in an oven and in flames[J]. Applied Physics B, 2001, 73(1):65-70.
[6] Derzy I, Lozovsky V A, Cheskis S. Absolute CH concentration in flames measured by cavity ring-down spectroscopy[J]. Chemical Physics Letters, 1999, 306(5):319-324.
[7] Luque J, Jeffries J B, Smith G P, et al. Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in low-pressure CH4-O2-N2 and CH4-NO-O2-N2 flames[J]. Combustion and Flame, 2001, 126(3):1725-1735.
[8] Pillier L, Moreau C, Mercier X, et al. Quantification of stable minor species in confined flames by cavity ring-down spectroscopy:application to NO[J]. Applied Physics B, 2002, 74(4):427-434.
[9] Evertsen R, Staicu A, Dam N, et al. Pulsed cavity ring-down spectroscopy of NO and NO2 in the exhaust of a diesel engine[J]. Applied Physics B, 2002, 74(4):465-468.
[10] Scherer J J, Rakestraw D J. Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame[J]. Chemical Physics Letters, 1997, 265(1):169-176.
[11] Luque J, Jeffries J B, Smith G P, et al. Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame[J]. Applied Physics B, 2001, 73(7):731-738.
[12] Dreyer C B, Spuler S M, Linne M. Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames[J]. Combustion Science and Technology, 2001, 171:163-190.
[13] Schocker A, Brockhinke A, Bultitude K, et al. Cavity ring-down measurements in flames using a single-mode tunable laser system[J]. Applied Physics B:Lasers and Optics, 2003, 77:101-108.
[14] Zhou Bingkun, Gao Yizhi, Chen Tirong, et al. The Principle of Laser[M]. 7th edition. Beijing:National Defense Industry Press, 2014. (in Chinese)
[15] Vaidyanathan A, Gustavsson J, Segal C. Heat fluxes/OH PLIF measurements in a GO2/GH2 single-element[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit, 2007, 7:8-11.
[16] Luque J, Crosley D R. LIFBASE:Database and spectral simulation (version 1.5)[R]. SRI International Report MP, 1999, 99:00929.
[17] Arnold A, Bombach R, Kppeli B, et al. Quantitative measurements of OH concentration fields by two-dimensional laser-induced fluorescence[J]. Applied Physics B, 1997, 64(5):579-583.
[18] Lin H, Reed Z D, Sironneau V T, et al. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 161:11-20.
[19] Chen S, Su T, Li Z, et al. Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy[J]. Chinese Physics B, 2016, 25(10):100701.