[1] Wang Naixiang, Xu Yulei, Shi Lei, et al. Analysis of the impact of windward and angle of attack to the flow field around the optical window on high Mach condition[J]. Infrared and Laser Engineering, 2015, 44(4):1267-1272. (in Chinese)王乃祥, 徐钰蕾, 史磊, 等. 高马赫数飞行器迎风面与攻角对光学窗口周围流场的影响分析[J]. 红外与激光工程, 2015, 44(4):1267-1272.
[2] Zheng Yonghui, Sun Huayan, Zhao Yanzhong, et al. Fast aero-optical distortion simulation of the detection laser based on Zemax[J]. Infrared and Laser Engineering, 2015, 44(S):80-85. (in Chinese)郑勇辉, 孙华燕, 赵延仲, 等. 基于Zemax的探测激光气动光学畸变快速仿真[J]. 红外与激光工程, 2015, 44(S):80-85.
[3] Meng Lixin, Zhao Dingxuan, Zhang Lizhong, et al. Boundary layer effect and compensation in airborne laser communication[J]. Optics and Precision Engineering, 2014, 22(12):3231-3238. (in Chinese)孟立新, 赵丁选, 张立中, 等. 机载激光通信中气动光学的影响及补偿[J]. 光学精密工程, 2014, 22(12):3231-3238.
[4] Li Junshan, Fan Jingbo, Yang Yawei, et al. Blur identification algorithm to suppress parasitic repples on infrared images[J]. Optics and Precision Engineering, 2015, 23(12):3456-3464. (in Chinese)李俊山, 樊景博, 杨亚威, 等. 抑制寄生波纹的红外图像降晰函数辨识算法[J]. 光学精密工程, 2015, 23(12):3456-3464.
[5] Lin Xudong, Xue Dong, Liu Xinyue, et al. Current status and research development of the wavefront correctors of adaptive optics[J]. Chinese Optics, 2012, 5(4):337-351.(in Chinese)林旭东, 薛栋, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学, 2012, 5(4):337-351.
[6] Wei Peifeng, Liu Xinyue, Lin Xudong, et al. Temporal simulation of atmospheric turbulence during adaptive optics system testing[J]. Chinese Optics, 2013, 6(3):371-377.(in Chinese)卫沛锋, 刘欣悦, 林旭东, 等. 自适应光学系统测试中大气湍流的时域模拟[J]. 中国光学, 2013, 6(3):371-377.
[7] Fitzgerald E J, Jumper E J. Scaling aero-optic aberrations due to propagation through compressible shear-layers[J].AIAA Paper, 2002, 40(7):1373-1381.
[8] Gilbert K G. KC-135 aero-optical boundary-layer/shear-layer experiments[J]. Nasa Sti/Recon Technical Report A, 1982, 80:306-324.
[9] Craig J E, Rose W C. Laser propagation from airborne platforms-A review of aero-optics scaling[C]//American Institute of Aeronautics and Astronautics, Fluid Dynamics and Plasmadynamics and Lasers Conference, 18th, 1985:108541.
[10] Kelsall D. Optical measurements of degradation in aircraft boundary layers[C]//Electromagnetic Wave Propagation from Aircraft, 1980:415-457.
[11] Gordeyev S, Jumper E. Aero-optical effects of supersonic boundary layers[J]. AIAA Paper, 2012, 50(3):682-690.
[12] Gordeyev S, Smith A E, Cress J A, et al. Experimental studies of aero-optical properties of subsonic turbulent boundary layers[J]. Journal of Fluid Mechanics, 2014, 740:214-253.
[13] Ding Haolin, Yi Shihe, Fu Jia, et al. Experimental investigation of aero-optical effect due to supersonic turbulent boundary layer[J]. Infrared and Laser Engineering, 2016, 45(10):1018007. (in Chinese)丁浩林, 易仕和, 付佳, 等. 超声速湍流边界层气动光学效应的实验研究[J]. 红外与激光工程, 2016, 45(10):1018007.
[14] Bichal A, Thurow B S. On the application of background oriented schlieren for wavefront sensing[J]. Measurement Science and Technology, 2014, 25(1):015001.
[15] Ross T S. Limitation and applicability of the marchal approximation[J]. Applied Optics, 2009, 48(10):1812-1818.