[1] Shi Y G. A glimpse of structural biology through x-ray crystallography [J]. Cell, 2014, 159(5): 995-1014. doi:  10.1016/j.cell.2014.10.051
[2] Kosynkin D V, Higginbotham A L, Sinitskii A. Longitudinal unzipping of carbon nanotubesto form graphene nanoribbons [J]. Nature, 2009, 458(7240): 872-876. doi:  10.1038/nature07872
[3] Fleury B, Cortes-Huerto R, Taché O, et al. Gold nanoparticle internal structure and symmetry probed by unified small-angle x-ray scattering and x-ray diffraction coupled with molecular dynamics analysis [J]. Nano Letters, 2015, 15(9): 6088-6094. doi:  10.1021/acs.nanolett.5b02924
[4] Davis T J, Gureyev T E, Stevenson A W. Phase-contrast imaging of weakly absorbing materials using hard X-rays [J]. Nature, 1995, 373(6515): 595-598. doi:  10.1038/373595a0
[5] Zamir A, Diemoz P C, Vittoria F A, et al. Edge illumination x-ray phase tomography of multi-material samples using a single-image phase retrieval algorithm [J]. Optics Express, 2017, 25(10): 11984. doi:  10.1364/OE.25.011984
[6] Endrizzi M. X-ray phase-contrast imaging [J]. Nuclear Instruments and Methods in Physics Research A, 2018, 878: 88-98. doi:  10.1016/j.nima.2017.07.036
[7] Miao J W, Charalambous P, Kirz J, et al. Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens [J]. Nature, 1999, 400(6742): 342-344. doi:  10.1038/22498
[8] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning X-ray diffraction microscopy [J]. Science, 2008, 321(5887): 379-382. doi:  10.1126/science.1158573
[9] Sidorenko P, Cohen O, Idorenko P A S, et al. Single-shot ptychography [J]. Optica, 2016, 3(1): 9-14. doi:  10.1364/OPTICA.3.000009
[10] Yu H, Lu R H, Han S S, et al. Fourier-transform ghost imaging with hard X rays [J]. Physical Review Letters, 2016, 117(11): 113901. doi:  10.1103/PhysRevLett.117.113901
[11] Pelliccia D, Rack A, Scheel M, et al. Experimental x-ray ghost imaging [J]. Physical Review Letters, 2016, 117(11): 113902. doi:  10.1103/PhysRevLett.117.113902
[12] Zhang A X, He Y H, Wu L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation [J]. Optica, 2018, 5(4): 374-377. doi:  10.1364/OPTICA.5.000374
[13] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction [J]. Physical Review Letters, 2004, 92(9): 093903. doi:  10.1103/PhysRevLett.92.093903
[14] Tan Z J, Yu H, Yang S C, et al. Fourier-transform ghost imaging with polychromatic light [J]. Journal of Modern Optics, 2020, 67(14): 1247-1253. doi:  10.1080/09500340.2020.1829143
[15] Tan Z J, Yu H, Lu R H, et al. Non-locally coded Fourier-transform ghost imaging [J]. Optics Express, 2019, 27(3): 2937-2948. doi:  10.1364/OE.27.002937
[16] Wu Z H , Zhao G Q, Lu F Q. Experimental Methods for Nuclear Physics[M]. Beijing: Atomic Energy Press, 1996. (in Chinese)
[17] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging [J]. Applied Physics Letters, 2011, 98(11): 041801. doi:  10.1063/1.3567931
[18] Agostinelli S, Allison J, Amako K. GEANT4: A simulation toolkit [J]. Nuclear Instruments and Methods in Physics Research. A, 2003, 506: 250-303. doi:  10.1016/S0168-9002(03)01368-8
[19] Tian N, Guo Q, Wang A, et al. Fluorescence ghost imaging with pseudothermal light [J]. Optics Letters, 2011, 36(16): 3302-3304. doi:  10.1364/OL.36.003302
[20] Chen M. Ghost imaging based on sparse array pseudothermal light system [J]. Acta Optica Sinica, 2012, 32(5): 503001-503419. (in Chinese) doi:  10.3788/AOS201232.0503001
[21] Schneider R, Mehringer T, Mercurio G, et al. Quantum imaging with incoherently scattered light from a free-electron laser [J]. Nature Physics, 2018, 14(2): 126-129. doi:  10.1038/nphys4301
[22] Kim Y Y, Gelisio L, Mercurio G, et al. Ghost imaging at an XUV free-electron laser [J]. Physical Review A, 2020, 101(1): 013820.
[23] Physics Society of High Energy. Geant4 User Do-cumentation[EB/OL].(2021-12-10)https://geant4.web.cern.ch/support/user_documentation.
[24] Allison J, Amako K, Apostolakis J. Recent developments in Geant4 [J]. Nuclear Instruments and Methods in Physics Research A, 2016, 835: 186-225. doi:  10.1016/j.nima.2016.06.125
[25] Allison J, Amako K, Apostolakis J. Geant4 developments and applications [J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi:  10.1109/TNS.2006.869826
[26] Biggs F, Lighthill R. Analytical approximations for x-ray cross sections III[R]. New Mexico: Sandia Laboratory, 1988.
[27] Born M. Atomic Physics[M]. Glasgow: Blackie and Sons Ltd, 1969.
[28] Hubbell J H, Gimm H A. Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV‐100 GeV photons in elements Z=1 to 100 [J]. Journal of Physical and Chemical Reference Data, 1980, 9(4): 1023-1148. doi:  10.1063/1.555629
[29] Liu H L, Cheng J, Han S S. Ghost imaging in Fourier space [J]. Journal of Applied Physics, 2007, 102(10): 103102. doi:  10.1063/1.2812597
[30] Lu X T, Jiang D X, Ye Y L. Nuclear Physics[M]. Beijing: Atomic Energy Press, 2000. (in Chinese)