[1] Hao Feifan, Ma Xiangyue, Li Haoyang, et al. A survey of autonomous vehicle detection sensors and its fusion technology [J]. Shanxi Electronic Technology, 2022(3): 93-96. (in Chinese)
[2] Molebny V, Kamerman G, Steinvall O. Laser radar: from early history to new trends[C]//Proceedings of SPIE, 2010, 7835: 783502.
[3] Massa J S, Buller G S, Walker A C, et al. Time-of-flight optical ranging system based on time-correlated single-photon counting [J]. Applied Optics, 1998, 37(31): 7298-7304. doi:  10.1364/AO.37.007298
[4] Pellegrini S, Buller G S, Smith J M, et al. Laser-based distance measurement using picosecond resolution time-correlated single-photon counting [J]. Measurement Science & Technology, 2000, 11(6): 712-716.
[5] Sjöqvist L, Henriksson M, Jonsson P, et al. Time-of-flight range profiling using time-correlated single-photon counting[C]// Proceedings of SPIE, 2007, 6738: 67380N.
[6] Steinvall O, Sjqvist L, Henriksson M, et al. High resolution ladar using time-correlated single-photon counting[C]//Laser Radar Technology and Applications XIII. SPIE, 2008, 6950: 695002.
[7] Massa J, Buller G, Walker A, et al. Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting [J]. Applied Optics, 2002, 41(6): 1063-1070. doi:  10.1364/AO.41.001063
[8] McCarthy A, Collins R J, Krichel N J, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting [J]. Applied Optics, 2009, 48(32): 6241-6251. doi:  10.1364/AO.48.006241
[9] McCarthy A, Ren X, Della Frera A, et al. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector [J]. Optics Express, 2013, 21(19): 22098-22113. doi:  10.1364/OE.21.022098
[10] McCarthy A, Krichel N J, Gemmell N R, et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection [J]. Optics Express, 2013, 21(7): 8904-8915. doi:  10.1364/OE.21.008904
[11] Pawlikowska A M, Halimi A, Lamb R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range [J]. Optics Express, 2017, 25(10): 11919-11931. doi:  10.1364/OE.25.011919
[12] Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km [J]. Optica, 2021, 8(3): 344-349. doi:  10.1364/OPTICA.408657
[13] Maccarone A, Mccarthy A, Ren X, et al. Underwater depth imaging using time-correlated single-photon counting [J]. Optics Express, 2015, 23(26): 33911-33926. doi:  10.1364/OE.23.033911
[14] Tobin R, Halimi A, McCarthy A, et al. Three-dimensional single-photon imaging through obscurants [J]. Optics Express, 2019, 27(4): 4590-4611. doi:  10.1364/OE.27.004590
[15] Rapp J, Ma Y, Dawson R M A, et al. High-Flux single-photon lidar [J]. Optica, 2021, 8(1): 30-39. doi:  10.1364/OPTICA.403190
[16] Tachella J, Altmann Y, Mellado N, et al. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers [J]. Nature Communications, 2019, 10: 4984.
[17] Molebny V, Steinvall O. Multi-dimensional laser radars[C]// Laser Radar Technology and Applications XIX, SPIE Deense and Security Symposium, Baltimore, USA, 2014, 9080(2): 1-32.
[18] Shan Ming, Nie Yanping. Comparison between successive difference method and least square method in linear fitting [J]. Physical Experiment of College, 2005, 18(2): 68-70. (in Chinese) doi:  10.3969/j.issn.1007-2934.2005.02.019
[19] Wang Bin, Lu Xiaohua. Discussion on uncertainty evaluation and applicable conditions of univariate linear calibration curve [J]. Metrology Science and Technology, 2022, 66(7): 44-49. (in Chinese)