[1] Pschl U. Atmospheric aerosols:composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44(46):7520-7540.
[2] Climate Change 2013:the Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York:Cambridge University Press, 2014.
[3] Tie X, Cao J. Aerosol pollution in China:Present and future impact on environment[J]. Particuology, 2009, 7(6):426-431.
[4] R Raymond M. Measures. Laser Remote Sensing:Fundamentals and Applications[M]. Florida:Wiley, 1992.
[5] Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(11):2310-2323.
[6] Ansmann A, Wandinger U, Le Rille O, et al. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN:methodology and simulations[J]. Applied Optics, 2007, 46(26):6606-6622.
[7] Sy O O, Tanelli S, Takahashi N, et al. Simulation of Earth CARE spaceborne Doppler radar products using ground-based and airborne data:effects of aliasing and nonuniform beam-filling[J]. Geoscience and Remote Sensing IEEE Transactions on, 2014, 52(2):1463-1479.
[8] Mace G G, Starr D O, Marchand R, et al. Contemplating synergistic algorithms for the NASA ACE mission[C]//SPIE Remote Sensing. International Society for Optics and Photonics, 2013, 8890:88900I.
[9] Liu Dong, Yang Yongying, Zhou Yudi, et al. High spectral resolution lidar for atmosphere remote sensing:a review[J]. Infrared and Laser Engineering, 2015, 44(9):2535-2546. (in Chinese)刘东, 杨甬英, 周雨迪, 等. 大气遥感高光谱分辨率激光雷达研究进展[J]. 红外与激光工程, 2015, 44(9):2535-2546.
[10] Hua Dengxin, Song Xiaoquan. Advances in lidar remote sensing techniques[J]. Infrared and Laser Engineering, 2008, 37(S):21-27. (in Chinese)华灯鑫, 宋小全. 先进激光雷达探测技术研究进展[J]. 红外与激光工程, 2008, 37(S):21-27.
[11] Liu Z, Sugimoto N, Murayama T. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar[J]. Applied Optics, 2002, 41(15):2760-2767.
[12] Sugimoto N, Lee C H. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths[J]. Applied Optics, 2006, 45(28):7468-7474.
[13] Xie C, Nishizawa T, Sugimoto N, et al. Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China[J]. Applied Optics, 2008, 47(27):4945-4951.
[14] GroS, Tesche M, Freudenthaler V, et al. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2[J]. Tellus B, 2011, 63(4):706-724.
[15] Burton S P, Ferrare R A, Hostetler C A, et al. Aerosol classification using airborne High Spectral Resolution Lidar measurements-methodology and examples[J]. Atmospheric Measurement Techniques, 2012, 5(1):73-98.
[16] GroS, Esselborn M, Weinzierl B, et al. Aerosol classification by airborne high spectral resolution lidar observations[J]. Atmospheric Chemistry and Physics, 2013, 13(5):2487-2505.
[17] Shipley S T, Tracy D H, Eloranta E W, et al. High resolution lidar to measure optical scattering properties of atmospheric aerosols. 1:Theory and instrumentation[J]. Applied Optics, 1983, 22(23):3716-3724.
[18] Hua D, Uchida M, Kobayashi T. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere[J]. Optics Letters, 2004, 29(10):1063-1065.
[19] Imaki M, Kobayashi T. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties[J]. Applied Optics, 2005, 44(28):6023-6030.
[20] She C Y, Alvarez II R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurements of aerosol and atmospheric profiles[J]. Optics Letters, 1992, 17(7):541-543.
[21] Piironen P, Eloranta E W. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J]. Optics Letters, 1994, 19(3):234-236.
[22] Hair J W. A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters[D]. Colorado:Colorado State University, 1998.
[23] Hair J W, Hostetler C A, Cook A L, et al. Airborne High Spectral Resolution Lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36):6734-6752.
[24] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3):346-358.
[25] Schwiesow R L, Lading L. Temperature profiling by Rayleigh-scattering lidar[J]. Applied Optics, 1981, 20(11):1972-1979.
[26] Shepherd G G. Application of Doppler Michelson imaging to upper atmospheric wind measurement:WINDII and beyond[J]. Applied Optics, 1996, 35(16):2764-2773.
[27] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2):1406-1420.
[28] Liu Z, Kobayashi T. Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio[J]. Optical Review, 1996, 3(1):47-52.
[29] Bruneau D, Pelon J. Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer:principle of operation and performance assessment[J]. Applied Optics, 2003, 42(6):1101-1114.
[30] Bruneau D, Pelon J, Blouzon F, et al. 355-nm high spectral resolution airborne lidar LNG:system description and first results[J]. Applied Optics, 2015, 54(29):8776-8785.
[31] Tenti G, Boley C D, Desai R C. On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(4):285-290.
[32] Liu B Y, Esselborn M, Wirth M, et al. Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar[J]. Applied Optics, 2009, 48(27):5143-5154.
[33] Miles R B, Lempert W R, Forkey J N. Laser rayleigh scattering[J]. Measurement Science and Technology, 2001, 12(5):R33.
[34] Freudenthaler V, Esselborn M, Wiegner M, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus, 2009, 61(1):165-179.
[35] Mishchenko M I, Sassen K. Depolarization of lidar returns by small ice crystals:An application to contrails[J]. Geophysical Research Letters, 1998, 25(3):309-312.
[36] Sugimoto N, Matsui I, Shimizu A, et al. Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai[J]. Geophysical Research Letters, 2002, 29(19). Doi: 10.1029/2002GL015112.
[37] Sassen K, Hsueh C. Contrail properties derived from high-resolution polarization lidar studies during SUCCESS[J]. Geophysical Research Letters, 1998, 25(8):1165-1168.
[38] Sakai T, Nagai T, Nakazato M, et al. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba[J]. Applied Optics, 2003, 42(36):7103-7116.
[39] Sassen K. Depolarization of laser light backscattered by artificial clouds[J]. Journal of Applied Meteorology, 1974, 13(8):923-933.
[40] Liu Z S, Liu B Y, Li Z G, et al. Wind measurements with incoherent Doppler lidar based on iodine filters at night and day[J]. Applied Physics B, 2007, 88(2):327-335.
[41] Liu Z S, Liu B Y, Wu S H, et al. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements[J]. Optics Letters, 2008, 33(13):1485-1487.
[42] Li Z G, Liu Z S, Yan Z A, et al. Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar[J]. Optical Engineering, 2008, 47(8):086001-086001-6.
[43] Song Xiaoquan, Guo Jinjia, Yan Zhao'ai, et al. Atmospheric aerosol optical parameters detection research with High Spectral Resolution Lidar[J]. Progress in Natural Science, 2008, 18(9):1009-1015. (in Chinese)宋小全, 郭金家, 闫召爱, 等. 大气气溶胶光学参数的高光谱分辨率激光雷达探测研究[J]. 自然科学进展, 2008, 18(9):1009-1015.
[44] Liu Z S, Bi D C, Song X, et al. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements[J]. Optics Letters, 2009, 34(18):2712-2714.
[45] Wu S, Song X, Liu B, et al. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement[J]. Optics Express, 2015, 23(26):33870-33892.
[46] Zhang Wei. Design and calibration of polarization channel in Water vapor-Cloud-Aerosol Lidar[D]. Qingdao:Ocean University of China, 2013. (in Chinese)张薇. 水汽-云-气溶胶激光雷达偏振通道的设计与校正研究[D]. 青岛:中国海洋大学, 2013.
[47] Omar A H, Winker D M, Vaughan M A, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10):1994-2014.
[48] Illingworth A J, Barker H W, Beljaars A, et al. The EarthCARE satellite:the next step forward in global measurements of clouds, aerosols, precipitation, and radiation[J]. Bulletin of the American Meteorological Society, 2015, 96(8):1311-1332.