[1] Chiodo N, Djerroud K, Acef O, et al. Lasers for coherent optical satellite links with large dynamics [J]. Applied Optics, 2013, 52(30): 7342-7351. doi:  10.1364/AO.52.007342
[2] Chen T, Kong W, Liu H, et al. Frequency-stepped pulse train generation in an amplified frequency-shifted loop for oxygen A-band spectroscopy [J]. Optics Express, 2018, 26(26): 34753-34762. doi:  10.1364/OE.26.034753
[3] Abbott B P, Abbott R, Abbott T D, et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence [J]. Physical Review Letters, 2016, 116(24): 241103. doi:  10.1103/PhysRevLett.116.241103
[4] Abari C, Tegtmeier Pedersen A, Dellwik E, et al. Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar [J]. Atmospheric Measurement Techniques, 2015, 8(10): 4145-4153. doi:  10.5194/amt-8-4145-2015
[5] 曹春燕. 光纤水听器阵列超远程光传输低噪声光放大链关键技术研究[D]. 国防科学技术大学, 2013.

Cao C Y. Study on key techniques of high performance fiber-optics hydrophone array based on ultra-remotely optical transmission and cascaded amplifiers[D]. Changsha: National University of Defense Technology, 2013. (in Chinese)
[6] Cheng Y, Kringlebotn J T, Loh W H, et al. Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow- band filter [J]. Optics Letters, 1995, 20(8): 875-877. doi:  10.1364/OL.20.000875
[7] Park N, Dawson J, Vahala K, et al. All fiber, low threshold, widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter [J]. Applied Physics Letters, 1991, 59: 2369-2371. doi:  10.1063/1.106018
[8] Chen J W, Zhao Y, Zhu Y N, et al. Narrow line-width ytterbium-doped fiber ring laser based on saturated absorber [J]. IEEE Photonics Technology Letters, 2017, 29(5): 439-441. doi:  10.1109/LPT.2017.2655081
[9] Ma X X, Lu B L, Wang K L, et al. Tunable broadband single-frequency narrow-linewidth fiber laser [J]. Acta Optica Sinica, 2019, 39(1): 0114001. (in Chinese)
[10] Wang X, Yan F P, Han W G. Single longitudinal mode narrow linewidth thulium-doped fiber laser with special subring cavity [J]. Chinese Journal of Lasers, 2019, 46(9): 0901001. (in Chinese) doi:  10.3788/CJL201946.0901001
[11] Kringlebotn J T, Archambault J L, Reekie L, et al. Er3+: Yb3+-codoped fiber distributed-feedback laser [J]. Optics Letters, 1994, 19(24): 2101-2103. doi:  10.1364/OL.19.002101
[12] Dong L, Loh W H, Caplen J E, et al. Efficient single- frequency fiber lasers with novel photosensitive Er/Yb optical fibers [J]. Optics Letters, 1997, 22(10): 694-696. doi:  10.1364/OL.22.000694
[13] Fan W, Chen B, Li X C, et al. Stress-induced single polarization DFB fiber lasers [J]. Optics Communications, 2002, 204(1): 157-161.
[14] Ball G A, Morey W W. Standing-wave monomode erbium fiber laser [J]. IEEE Photonics Technology Letters, 1991, 3(7): 613-615. doi:  10.1109/68.87930
[15] Syzskind J L, Mizrahi V, Digiovanni D J, et al. Short single frequency erbium-doped fibre laser [J]. Electronics Letters, 1992, 28(15): 1385-1387. doi:  10.1049/el:19920881
[16] Kringlebotn J T, Morkel P R, Reekie L, et al. Efficient diode-pumped single-frequency erbium: ytterbium fiber laser [J]. IEEE Photonics Technology Letters, 1993, 5(10): 1162-1164. doi:  10.1109/68.248414
[17] Cranch G A, Englund M A, Kirkendall C K, et al. Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers [J]. IEEE Journal of Quantum Electronics, 2004, 39(12): 1579-1587.
[18] Loranger S, Korpov V, Shinn G W, et al. Single-frequency low-threshold linearly polarized DFB Raman fiber lasers [J]. Optics Letters, 2017, 42(19): 3864-3867. doi:  10.1364/OL.42.003864
[19] Spiegelberg C, Geng J, Hu Y, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003) [J]. Journal of Lightwave Technology, 2004, 22(1): 57-62. doi:  10.1109/JLT.2003.822208
[20] Fang Q, Xu Y, Fu S J, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm [J]. Optics Letters, 2016, 41(8): 1829-1832. doi:  10.1364/OL.41.001829
[21] Yang C S, Cen X, Xu S H, et al. Research progress of single-frequency fiber laser(Invited) [J]. Acta Optica Sinica, 2021, 41(1): 0114002. (in Chinese) doi:  10.3788/AOS202141.0114002
[22] Delevaque T, Georges T, Monerie M, et al. Modeling of pair-induced quenching in erbium-doped silicate fibers [J]. IEEE Photonics Technology Letters, 1993, 5(1): 73-75. doi:  10.1109/68.185065
[23] Zhang Y M, Qian G Q, Xiao X S, et al. The preparation of Yttrium Aluminosilicate (YAS) glass fiber with heavy doping of Tm3+ from Polycrystalline YAG ceramics [J]. Journal of the American Ceramic Society, 2018, 101(10): 4627-4633. doi:  10.1111/jace.15722
[24] Xie Y Y, Liu Z J, Cong Z H, et al. All-fiber-integrated Yb: YAG-derived silica fiber laser generating 6 W output power [J]. Optics Express, 2019, 27(3): 3791-3798. doi:  10.1364/OE.27.003791
[25] Wan Y, Wen J X, Dong Y H, et al. An exceeding 50% slope efficiency DBR fiber laser based on Yb-doped crystal-derived silica fiber with high gain per unit length [J]. Optics Express, 2020, 28(16): 23771-23783. doi:  10.1364/OE.399692
[26] Qian G Q, Wang W L, Tang G W, et al. Tm: YAG ceramic derived multimaterial fiber with high gain per unit length for all-fiber mode-locked fiber laser applications [J]. Optics Letters, 2020, 45(5): 1047-1050. doi:  10.1364/OL.386005
[27] Tang G W, Qian G Q, Lin W, et al. Broadband 2 μm amplified spontaneous emission of Ho/Cr/Tm: YAG crystal derived all-glass fibers for mode-locked fiber laser applications [J]. Optics Letters, 2019, 44(13): 3290-3293. doi:  10.1364/OL.44.003290
[28] Huang Y C, Lu Y K, Chen J C, et al. Broadband emission from Cr-doped fibers fabricated by drawing tower [J]. Optics Express, 2006, 14(19): 8492-8497. doi:  10.1364/OE.14.008492
[29] Ballato J, Hawkins T, Foy P, et al. On the fabrication of all-glass optical fibers from crystals [J]. Journal of Applied Physics, 2009, 105(5): 53110. doi:  10.1063/1.3080135
[30] Dragic P, Law P, Ballato J, et al. Brillouin spectroscopy of YAG-derived optical fibers [J]. Optics Express, 2010, 18(10): 10055-10067. doi:  10.1364/OE.18.010055
[31] Ballato J, Dragic P D. Characterisation of Raman gain spectra in Yb: YAG-derived optical fibres [J]. Electronics Letters, 2013, 49(14): 895-896. doi:  10.1049/el.2013.1386
[32] Dragic P D, Ballato J, Hawkins T, et al. Feasibility study of Yb: YAG-derived silicate fibers with large Yb content as gain media [J]. Optical Materials, 2012, 34(8): 1294-1298. doi:  10.1016/j.optmat.2012.02.019
[33] Geng J H, Wang Q, Luo T, et al. Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber [J]. Optics Letters, 2009, 34(22): 3493-3495. doi:  10.1364/OL.34.003493
[34] Zhang Y M, Qian G Q, Xiao X S, et al. A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method [J]. Journal of the American Ceramic Society, 2017, 101(4): 1616-1622.
[35] Zhang Y M, Sun Y, Wen J X, et al. Investigation on the formation and regulation of yttrium aluminosilicate fiber driven by spontaneous element migration [J]. Ceramics International, 2019, 45(15): 19182-19188. doi:  10.1016/j.ceramint.2019.06.165
[36] Zheng S P, Li J, Yu C L, et al. Preparation and characterizations of Nd: YAG ceramic derived silica fibers drawn by post-feeding molten core approach [J]. Optics Express, 2016, 24(21): 24248. doi:  10.1364/OE.24.024248
[37] Zheng S P, Li J, Yu C L, et al. Preparation and characterizations of Yb: YAG-derived silica fibers drawn by on-line feeding molten core approach [J]. Ceramics International, 2017, 43(7): 5837-5841. doi:  10.1016/j.ceramint.2017.01.122
[38] Li C Z, Jia Z X, Cong Z H, et al. Gain characteristics of ytterbium-doped SiO2-Al2O3-Y2O3 fibers [J]. Laser Physics, 2019, 29(5): 55804. doi:  10.1088/1555-6611/ab0a6f
[39] Xie Yongyao, Cong Zhenhua, Zhao Zhigang, et al. Preparation of Er:YAG crystal-derived all-glass silica fibers for a 1550-nm single-frequency laser [J]. Journal of Lightwave Technology, 2021, 39(14): 4769-4775. doi:  10.1109/JLT.2021.3076889
[40] Fermann M E, Hartl I. Ultrafast fibre lasers [J]. Nature Photonics, 2013, 7(11): 868-874. doi:  10.1038/nphoton.2013.280
[41] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives(Invited) [J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi:  10.1364/JOSAB.27.000B63
[42] Leconte B, Gilles H, Robin T, et al. 7.5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser [J]. Optics Express, 2018, 26(8): 10000-10006. doi:  10.1364/OE.26.010000
[43] Bode M, Freitag I, Tünnermann A, et al. Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region [J]. Optics Letters, 1997, 22(16): 1220-1222. doi:  10.1364/OL.22.001220
[44] Zhu X S, Shi W, Zong J, et al. 976 nm single-frequency distributed Bragg reflector fiber laser [J]. Optics Letters, 2012, 37(20): 4167-4169. doi:  10.1364/OL.37.004167
[45] Bouchier A, Lucasleclin G, Georges P, et al. Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO: LiNbO3 waveguide [J]. Optics Express, 2005, 13(18): 6974-6979. doi:  10.1364/OPEX.13.006974
[46] Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications(Invited) [J]. Applied Optics, 2014, 53(28): 6554-6568. doi:  10.1364/AO.53.006554
[47] Zhang Y M, Qiu J Q. Yttrium aluminosilicate (YAS) fiber with heavily doped of Nd for single frequency laser[C]//Asia Communications and Photonics Conference(ACP), 2018.
[48] 邵贤彬. Nd: YAG晶体衍生光纤的制备、表征及单频激光技术研究[D]. 山东大学, 2021.

Shao X B. Preparation, characterization and single frequency laser technology of Nd: YAG crystal derived fiber[D]. Jinan: Shandong University, 2021. (in Chinese)
[49] Wang Y F, Zhang Y M, Cao J K, et al. 915 nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @ silica glass hybrid fiber for the pure blue fiber laser [J]. Optics Letters, 2019, 44(9): 2153-2156. doi:  10.1364/OL.44.002153
[50] Shao X B, Chen X H, Cong Z H, et al. Single-frequency Nd: YAG crystal-derived fiber laser at 915 nm [J]. Acta Optica Sinica, 2021, 41(22): 2206001. (in Chinese)
[51] 马云秀. 掺镱光纤发光特性及激光器研究[D]. 华中科技大学, 2019.

Ma X Y, Study on luminescence and laser characteristics of ytterbium doped fiber[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
[52] 周国栋. 高掺镱双包层磷酸盐光纤的制备与研究[D]. 华南理工大学, 2019.

Zhou G D. Preparation and study of highly Yb3+-doped double-clad phosphate fiber[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
[53] 黄金. 基于高掺杂Yb3+石英光纤的DBR短腔单频光纤激光器的研究[D]. 西北大学, 2017.

Huang J. Investigation of single-frequency distributed Bragg reflector fiber laser with highly Yb-doped silica fiber[D]. Xi'an: Northwest University, 2017. (in Chinese)
[54] 谢永耀. 基于YAG晶体衍生光纤的单频激光技术研究[D]. 山东大学, 2021.

Xie Y Y. Studies of single-frequency laser based on YAG crystal-derived silica[D]. Jinan: Shandong University, 2021. (in Chinese)
[55] Zhang Y M, Wang W W, Li J, et al. Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser [J]. Journal of the American Ceramic Society, 2019, 102: 2551-2557.
[56] Liu Z J, Xie Y Y, Cong Z H, et al. 110  mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064  nm [J]. Optics Letters, 2019, 44(17): 4307-4310. doi:  10.1364/OL.44.004307
[57] 蒋明渊. 基于Yb: YAG晶体衍生光纤的单频激光器的设计与研究[D]. 山东大学, 2021.

Jiang M Y. Design and research of single frequency laser based on Yb: YAG crystal derived fiber[D]. Jinan: Shandong University, 2021. (in Chinese)
[58] Xie Y Y, Cong Z H, Zhao Z G, et al. Linearly polarized single-frequency fiber laser based on the Yb: YAG-crystal derived silica fiber [J]. Applied Optics, 2020, 59(32): 9931-9936. doi:  10.1364/AO.400882
[59] Gao X B, Cong Z H, Zhao Z J, et al. Single-frequency kHz-linewidth 1070 nm laser based on Yb: YAG derived silica fiber [J]. IEEE Photonics Technology Letters, 2020, 32(14): 895-898. doi:  10.1109/LPT.2020.3003668
[60] Xie Y Y, Cong Z H, Zhao Z G, et al. A 976 nm single-frequency laser based on the Yb: YAG crystal-derived fiber [J]. Chinese Journal of Lasers, 2021, 48(12): 1201010. (in Chinese) doi:  10.3788/CJL202148.1201010
[61] Wan Y, Wen J X, Jiang C, et al. Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber [J]. Photonics Research, 2021, 9(5): 649-656. doi:  10.1364/PRJ.419178
[62] Wan Y, Wen J X, Jiang C, et al. Over 100 mW stable low-noise single-frequency ring-cavity fiber laser based on a saturable absorber of Bi/Er/Yb co-doped silica fiber [J]. Journal of Lightwave Technology, 2022, 40(3): 805-812. doi:  10.1109/JLT.2021.3124227
[63] Qi F, Zheng B L, Yang J, et al. Fabrication of yttrium aluminosilicate fibers with high Yb3+ doping from Yb: YAG ceramic nanopowders and its application in single-frequency fiber lasers [J]. Optical Materials Express, 2022, 12(3): 876-884.
[64] Ishii S, Mizutani K, Fukuoka H, et al. Coherent 2 μm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device [J]. Applied Optics, 2010, 49(10): 1809-1817. doi:  10.1364/AO.49.001809
[65] Engin D, Chuang T, Storm M. Compact, highly efficient, athermal, 25 W, 2051 nm Tm-fiber based MOPA for CO2 trace-gas laser space transmitter[C]//Proceedings of SPIE LASE, 2017, 10083: 1008325.
[66] Zhang Z, Boyland A J, Sahu J K, et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm [J]. IEEE Photonics Technology Letters, 2011, 23(7): 417-419. doi:  10.1109/LPT.2011.2106491