[1] Zhang Laixian, Sun Huayan, Guo Huichao, et al. Auto focusing algorithm based on largest gray gradient summation[J]. Acta Photonica Sinica, 2013, 42(5):605-610. (in Chinese) 张来线, 孙华燕, 郭惠超, 等. 基于图像灰度梯度最大值累加的自动调焦算法[J]. 光子学报, 2013, 42(5):605-610.
[2] Mei Gui, Zhai Yan, Miao Jianyu, et al. Focal plane alignment and testing for an off-axis multispectral space borne camera[J]. Chinese Optics, 2016, 9(4):491-500. (in Chinese) 梅贵, 翟岩, 苗健宇, 等. 星载离轴多光谱相机焦平面的装调与检测[J]. 中国光学, 2016, 9(4):491-500.
[3] Wu X, Hu S, Zhao J, et al. Analysis of comparative different methods for image enhancement[J]. Journal of Central South University, 2014, 21(12):4563-4570.
[4] Wang Hao, Zhang Ye, Shen Honghai, et al. Review of image enhancement algorithms[J]. Chinese Optics, 2017, 10(4):438-448. (in Chinese) 王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学, 2017, 10(4):438-448.
[5] Xu Chao, He Limin, Wang Xia, et al. Design of high speed processing module for infrared polarization imaging system[J]. Infrared and Laser Engineering, 2017, 46(2):0204002. (in Chinese) 徐超, 何利民, 王霞, 等. 红外偏振成像系统高速处理模块设计[J]. 红外与激光工程, 2017, 46(2):0204002.
[6] Wang Yeru, Feng Huajun, Xu Zhihai, et al. An adjustable coverage range autofocus evaluation function using gradient operator with on variable frequency[J]. Infrared and Laser Engineering, 2016, 45(10):1028001. (in Chinese) 王烨茹, 冯华君, 徐之海, 等. 一种覆盖范围可调的变频梯度自动对焦评价函数[J]. 红外与激光工程, 2016, 45(10):1028001.
[7] Liu S, Liu M, Yang Z. An image auto-focusing algorithm for industrial image measurement[J]. Eurasip Journal on Advances in Signal Processing, 2016, 2016(1):70.
[8] Qi Y, He R, Lin H. Novel infrared image enhancement technology based on the frequency compensation appr-oach[J]. Infrared Physics Technology, 2016, 18(76):521-529.
[9] Zhao Wenda, Xu Zhijun, Zhao Jian, et al. Enhancement of infrared image details based on gradient histogr-am transform[J]. Opt Precision Eng, 2014, 22(7):1962-1968. (in Chinese) 赵文达, 续志军, 赵建, 等. 基于梯度直方图变换增强红外图像的细节[J]. 光学精密工程, 2014, 22(7):1962-1968.
[10] Li Ke, Zhang Kangwei, Luo Miao. Design on optical system of large plane array and high resolution multi-spectral imager based on LCTF[J]. Infrared and Laser Engineering, 2013, 42(3):675-679. (in Chinese) 李珂, 张康伟, 罗淼. 基于LCTF的大幅面高分辨率多光谱仪光学系统设计[J]. 红外与激光工程, 2013, 42(3):675-679.
[11] Huang Detian, Liu Xuechao, Zhang Hongsheng, et al. Fast auto-focusing method based on human visual system[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(5):768-776. (in Chinese) 黄德天, 刘雪超, 张红胜, 等. 基于人类视觉的快速自动调焦法[J]. 液晶与显示, 2014, 29(5):768-776.
[12] He Zhiyong, Sun Lining, Chen Liguo. Fast computation of threshold based on Otsu criterion[J]. Acta Electronic Sinica, 2013, 41(2):267-272. (in Chinese) 何志勇, 孙立宁, 陈立国. Otsu准则下分割阈值的快速计算[J]. 电子学报, 2013, 41(2):267-272.
[13] Zhou Qiang, Zhao Jufeng, Feng Huajun, et al. Infrared image enhancement using polarization imaging[J]. Infrared and Laser Engineering, 2014, 43(1):39-47. (in Chinese) 周强, 赵巨峰, 冯华君, 等. 基于偏振成像的红外图像增强[J]. 红外与激光工程, 2014, 43(1):39-47.
[14] Qin Hanlin, Zhou Huixin, Liu Shangqian, et al. Nonlinear enhancement algorithm for infrared image based on second generation wavelet transform[J]. Acta Optica Sinica, 2009, 29(2):353-356. (in Chinese) 秦翰林, 周慧鑫, 刘上乾, 等. 基于二代小波变换的红外图像非线性增强算法[J]. 光学学报, 2009, 29(2):353-356.
[15] Li Qingzhong, Liu Qing. Adaptive enhancement algorithm for low illumination images based on wavelet transform[J]. Chinese Journal of Lasers, 2015, 42(2):0209001. (in Chinese) 李庆忠, 刘清. 基于小波变换的低照度图像自适应增强算法[J]. 中国激光, 2015, 42(2):0209001.
[16] Ge Wei, Li Guiju, Cheng Yuqi, et al. Face image illum-ination processing based on improved Retinex[J]. Opt Precision Eng, 2010, 18(4):1011-1020. (in Chinese) 葛微, 李桂菊, 程宇奇, 等. 利用改进的Retinex进行人脸图像光照处理[J]. 光学精密工程, 2010, 18(4):1011-1020.
[17] Chu Xiang, Zhu Lianqing, Meng Xiaochen, et al. Quick focusing method in bionic vision based on the liquid lens[J]. Laser and Infrared, 2017, 47(2):203-209. (in Chinese) 褚翔, 祝连庆, 孟晓辰, 等. 一种基于液体透镜的仿生视觉快速调焦方法[J]. 激光与红外, 2017, 47(2):203-209.