[1] Wu Jiang, Shen Weidong, Yuan Wenjia, et al. Anti-ultraviolet radiation of antireflection coatings for display plastics[J]. Acta Optica Sinica, 2011, 31(2):282-285. (in Chinese) 武江, 沈伟东, 袁文佳, 等. 抗紫外辐射塑料显示面板的减反射膜[J]. 光学学报, 2011, 31(2):282-285.
[2] Sun Xipeng, Xiao Zhibin, Du Yongchao. Design of broadband antireflection coating for new gallium arsenide solar[J]. Acta Optica Sinica, 2016, 36(4):0431002. (in Chinese) 孙希鹏, 肖志斌, 杜永超. 新型砷化镓太阳电池的宽带减反射膜设计[J]. 光学学报, 2016, 36(4):0431002.
[3] Boden S A, Bagnall D M. Optimization of moth-eye antirelection schemes for silicon solar cells[J]. Progress in Photovoltaics:Research and Applications, 2010, 18:195-203.
[4] Bernhard C G, Miller W H. A corneal nipple pattern inilnsect compound eyes[J]. Acta Physiologica Scan Dinavica, 1962, 56(3):385-386.
[5] Kane Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3):302-307.
[6] Dong Tingting, Fu Yuegang, Chen Chi, et al. Study on bionic moth-eye antireflective cylindrical micro-nano structure on germanium substrate[J]. Acta Optica Sinica, 2016, 36(5):0522004. (in Chinese) 董亭亭, 付跃刚, 陈驰, 等. 锗衬底表面圆柱形仿生蛾眼抗反射微纳结构的研制[J]. 光学学报, 2016, 36(5):0522004.
[7] Dong Tingting, Fu Yuegang, Chen Chi, et al. Design and manufacture of columned antireflective periodic microstructures on the surface of Si substrate[J]. Infrared and Laser Engineering, 2016, 45(6):0622002. (in Chinese) 董亭亭, 付跃刚, 陈驰, 等. Si衬底表面圆柱形抗反射周期微结构的设计及制作[J]. 红外与激光工程, 2016, 45(6):0622002.
[8] Kim Yoon-Chang, Do Young Rag. Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography:moth-eye lighting[J]. Optics Express, 2005, 13(5):1598-1603.
[9] Dong Xiaoxuan, Shen Su, Chen Linsen. Fabrication of moth-eye antireflection nanostructure through a silver mirror reaction[J]. Acta Photonica Sinica, 2014, 43(7):0722001. (in Chinese) 董晓轩, 申溯, 陈林森. 银镜反应制备纳米蛾眼减反结构法[J]. 光子学报, 2014, 43(7):0722001.
[10] Glaser T, Ihring A, Morgenroth W, et al. High temperature resistant antireflective moth-eye structures for infrared radiation sensors[J]. Microsystem Technologies, 2003, 11:86-90.
[11] Kim Byung-Jae, Kim Jihyun. Fabrication of GaAs subwavelength structure (SWS) for solar cell applications[J]. Optics Express, 2011, 19(S3):A326-A330.
[12] Bai Yu, Guo Xiaoyang, Liu Xingyuan. Theoretical study on the improvement of light absorption efficiency of organic solar cells by moth eye structures[J]. Chinese Journal of Luminescence, 2015, 36(5):539-544. (in Chinese) 白昱, 郭晓阳, 刘星元. 利用蛾眼结构提高有机太阳能电池光吸收效率的理论研究[J]. 发光学报, 2015, 36(5):539-544.
[13] Kondo T, Suzuki A, Teramae F, et al. Enhancement of light extraction efficiency on blue light-emitting diodes by moth-eye structure[C]//SPIE, 2010, 7602:76021M.
[14] Rogers D J, Sandana V E, Hosseini Teherani F, et al. Fabrication of nanostructured heterojunction LEDs using self-forming Moth-Eye type arrays of n-ZnO nanocones grown on p-Si (111) substrates by pulsed laser deposition[C]//SPIE, 2009, 7217:721708.
[15] Naniwae K, Mori M, Kondo T, et al. Introduction of the moth-eye patterned sapphire substrate technology for cost effective high performance LEDs[C]//SPIE, 2013, 8641:86410G.
[16] Dong Tingting. Research on the optical mechanism of bionic moth-eye antireflection micro-nano structure[D]. Changchun:Changchun University of Science and Technology, 2016:61. (in Chinese) 董亭亭. 仿生蛾眼抗反射微纳结构光学机理研究[D]. 长春:长春理工大学, 2016:61.