[1] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2):82-87.
[2] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
[3] Wei Tongda, Zhang Yunhai, Yang Haomin. Super resolution imaging technology of stimulated emission depletion[J]. Infrared and Laser Engineering, 2016, 45(6):0624001. (in Chinese)魏通达, 张运海, 杨皓旻. 受激辐射损耗超分辨成像技术研究[J]. 红外与激光工程, 2016, 45(6):0624001.
[4] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645.
[5] Bates M, Huang B, Rust M J, et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10):793-796.
[6] Xu K, Babcock H P, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 2012, 9(2):185-188.
[7] Hinterdorfer P, Oijen A. Handbook of Single-Molecule Biophysics[M]. New York:Springer, 2009.
[8] Herbert S, Soares H, Zimmer C, et al. Single-molecule localization super-resolution microscopy:deeper and faster[J]. Microscopy and Microanalysis, 2012, 18(6):1419-1429.
[9] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845):1749-1753.
[10] Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864):810-813.
[11] French J B, Jones S A, Deng H, et al. Spatial colocalization and functional link of purinosomes with mitochondria[J]. Science, 2016, 351(6274):733-737.
[12] Pan Leiting, Hu Fen, Zhang Xinzheng, et al. Multicolor single-molecule localization super-resolution microscopy[J]. Acta Optica Sinica, 2017, 37(3):0318010. (in Chinese)潘雷霆, 胡芬, 张心正, 等. 多色单分子定位超分辨显微成像术[J]. 光学学报, 2017, 37(3):0318010.
[13] Bossi M, Flling J, Belov V N, et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species[J]. Nano Letters, 2008, 8(8):2463-2468.
[14] Zhengyang Z, Samuel J K, Margaret H, et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy[J]. Nature Methods, 2015, 12(10):935-938.
[15] Dong B, Luay A, Urban B E, et al. Super-resolution spectroscopic microscopy via photon localization[J]. Nature Communications, 2016, 7:12290.
[16] Shechtman Y, Weiss L E, Backer A S, et al. Multicolour localization microscopy by point-spread-function engineering[C]//SPIE Bios, 2016, 9714:971400L.
[17] Hauser M, Wojcik M, Kim D, et al. Correlative super-resolution microscopy:new dimensions and new opportunities[J]. Chemical Review, 2017, 117:7428-7456.
[18] Watanabe S, Punge A, Hollopeter G, et al. Protein localization in electron micrographs using fluorescence nanoscopy[J]. Nature Methods, 2011, 8(1):80-84.
[19] Suleiman H, Zhang L, Roth R, et al. Correction:Nanoscale protein architecture of the kidney glomerular basement membrane[J]. Elife, 2013, 2(2):e01149.
[20] Wojcik M, Hauser M, Wan L, et al. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells[J]. Nature Communications, 2015, 6(3):7384.
[21] Lschberger A, Franke C, Krohne G, et al. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution[J]. Journal of Cell Science, 2014, 127(20):4351-4355.
[22] Xu K, Zhong G, Zhuang X. Actin, spectrin and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 2013, 339(6118):452-456.
[23] Moon S, Yan R, Kenny S J, et al. Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes[J]. Journal of the American Chemical Society, 2017, 139(32):10944-10947.
[24] Kim D, Zhang Z, Xu K. Spectrally resolved super-resolution microscopy unveils multipath reaction pathways of single spiropyran molecules[J]. Journal of the American Chemical Society, 2017, 139(28):9447-9450.
[25] Ge L, Zhang M, Kenny S J, et al. Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis[J]. EMBO Reports, 2017, 18(9):1586-1603.
[26] Karanasios E, Walker S A, Okkenhaug H, et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles[J]. Nature Communications, 2016, 7:12420.
[27] Hu Y, Cang H, Lillemeier B F. Superresolution imaging reveals nanometer-and micrometer-scale spatial distributions of T-cell receptors in lymph nodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26):7201-7206.
[28] Schneberg J, Lehmann M, Ullrich A, et al. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission[J]. Nature Communications, 2017, 8:15873.
[29] Suleiman H Y, Roth R, Jain S, et al. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy[J]. JCI Insight, 2017, 2(16):94137.