[1] Coffey V. High-energy lasers:new advances in defense applications[J]. Optics and Photonics News, 2014, 25(10):28-35.
[2] Jones Q. Targets destroyed-at the speed of light[J]. Boeing Frontiers, 2014, 8(2):32-35.
[3] Wang Huisheng, Liu Yang, Wei Shangfang, et al. Coherent combination of Michelson cavity fibre lasers[J]. Optics and Precision Engineering, 2009, 17(8):1520-1527. (in Chinese)王会升, 刘洋, 韦尚方, 等. 迈氏腔光纤激光器的相干合成[J]. 光学精密工程, 2009, 17(8):1520-1527.
[4] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17):13240-13266.
[5] Zervas M N, Codemard C A. High power fiber lasers:A review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5):219-241.
[6] Sprangle P, Penano J, Hafizi B. Beam combining and atmospheric propagation of high power lasers[R]. Washington, DC:Naval Research Laboratory Beam Physics Branch Icarus Research, Inc., 2011.
[7] Staton R, Pawlak R. Laser weapon system (LAWS) adjunct to the close-in weapon system (CIWS)[R]. Dahlgren, VA:Naval Surface Warfare Center Dahlgren Division, Corporate Communication, 2012.
[8] Mohring B, Dietrich S, Tassini L, et al. High-energy laser activities at MBDA Germany[C]//SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 2013, 8733:873304-1-9.
[9] Sprangle P A, Penano J R, Hafizi B, et al. Apparatus for incoherent combining of high power lasers for long-range directed-energy applications:US, US Patent7970040[P]. 2011-06-28.
[10] Bourdon P, Lombard L, Durcu A, et al. Coherent combining of fiber lasers[C]//XXI International Symposium on High Power Laser Systems and Applications. International Society for Optics and Photonics, 2017, 10254:1025402-1-10.
[11] Lowenthal D. Lasers Sources Across the Spectrum[J]. SPIE's Oemagazine, 2005, 4:28.
[12] Divliansky I. Volume Bragg Gratings:Fundamentals and Applications in Laser Beam Combining and Beam Phase Transformations[M]//Naydenova I, Nazarova D, Babeva T.Holographic Materials and Optical Systems. London:InTech, 2017.
[13] Sevian A, Andrusyak O, Ciapurin I V, et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Optics Letters, 2008, 33(4):384-386.
[14] Divliansky I, Ott D, Anderson B, et al. Multiplexed volume Bragg gratings for spectral beam combining of high power fiber lasers[C]//Proc SPIE, 2012, 8237:823705.
[15] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16):3118-3120.
[16] Loftus T H, Liu A P, Hoffman P R, et al. 522W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality[J]. Optics Letters, 2007, 32(4):349-351.
[17] Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[C]//SPIE, 2013, 8601:8601155.
[18] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//SPIE, 2016, 9730:97300Y.
[19] Madasamy P, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):337-343.
[20] Ma Yi, Yan Hong, Tian Fei, et al. Common aperture spectral beam combination of fiber lasers with 5kW power high-eficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(4):7-9. (in Chinese)马毅, 颜宏, 田飞, 等. 光纤激光共孔径光谱合成实现5kW高效优质输出[J]. 强激光与粒子束, 2015, 27(4):7-9.
[21] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43(9):0901009. (in Chinese)马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43(9):0901009.
[22] Zheng Ye, Yang Yifeng, Zhao Xiang, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2):0201002. (in Chinese)郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44(2):0201002.
[23] Vorontsov M. Adaptive photonics phase-locked elements (APPLE):system architecture and wavefront control concept[C]//SPIE, 2005, 5895:1-9.
[24] Zhang Yudong, Rao Changhui, Li Xinyang. Adaptive Optics and Laser Control[M]. Beijing:National Defense Industry Press, 2016. (in Chinese)张雨东, 饶长辉, 李新阳. 自适应光学及激光操控[M]. 北京:国防工业出版社, 2016.
[25] Fan Xinyan. Research of active phase-locking fiber laser coherent combining technique[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)范馨燕. 主动锁相光纤激光相干合成技术研究[D]. 哈尔滨:哈尔滨工业大学, 2010.
[26] Liu Zejin, Xu Xiaojun, Chen Jinbao, et al. Multi beams combiner with high duty ratio:CN Patent,ZL200920065407.7[P]. 2010-06-23. (in Chinese)刘泽金, 许晓军, 陈金宝, 等. 多光束高占空比合束器:中国专利, ZL200920065407.7[P]. 2010-06-23.
[27] Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators:analysis and experimental demonstration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):269-280.
[28] Jenna Brady. Army develops first-of-its kind phase-coherent fiber laser array system[EB/OL]. (2014-06-11)[2017-06-01].U.S. Army Research Laboratory, https://www..army.mil/article/127565/Army_develops_first_of_its_kind_phase_coherent_fiber_laser_array_system/.
[29] Geng Chao, Zhang Xiaojun,Li Xinyang, et al. Structural design of adaptive fiber optics collimators[J]. Infrared and Laser Engineering, 2011, 40(9):1682-1685. (in Chinese)耿超, 张小军, 李新阳, 等. 自适应光纤光源准直器的结构设计[J]. 红外与激光工程, 2011, 40(9):1682-1685.
[30] Wang Xiong, Wang Xiaolin, Zhou Pu, et al. Experimental research of tilt-tip wavefront and phase-locking control in fiber lasers coherent beam combining[J]. Infrared and Laser Engineering, 2013, 42(6):1443-1447. (in Chinese)王雄, 王小林, 周朴, 等. 光纤激光相干合成中倾斜和锁相同时控制的实验研究[J]. 红外与激光工程, 2013, 42(6):1443-1447.
[31] Christensen S E, Koski O. 2-dimensional waveguide coherent beam combiner[C]//Advanced Solid-State Photonics. Optical Society of America, 2007.
[32] Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide[J]. Optics Express, 2010, 18(13):13547-13553.
[33] Cheung E, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4):354-356.
[34] Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14):2832-2834.
[35] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Optics Letters, 2012, 37(18):3741-3743.
[36] Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination[J]. IEEE Journal of Quantum Electronics, 2010, 46(8):1191-1196.
[37] Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Applied Optics, 2010, 49(35):6762-6765.
[38] Ma P, Zhou P, Ma Y, et al. Coherent polarization beam combining of four high power fiber amplifiers using single frequency dithering technique[J]. IEEE Photonics Technology Letters, 2012, 24(12):1024-1026.
[39] Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique[J]. Laser Physics Letters, 2012, 9(6):456-458.
[40] Liu Zejin, Zhou Pu, Ma Pengfei, et al. 4-channel polarize coherent combination of high-power narrow-linewidth linear polarization fiber amplifiers with 5 kW high intensity laser output[J]. Chinese Journal of Lasers, 2017, 44(4):0415004. (in Chinese)刘泽金, 周朴, 马鹏飞,等. 4路高功率窄线宽、线偏振光纤放大器相干偏振合成实现5 kW级高亮度激光输出[J]. 中国激光, 2017, 44(4):0415004.