[1] Wu Dongjiang, Zhou Siyu, Yao Longyuan, et al. Simulation of micro-groove cross-section in femtosecond laser ablation of quartz glass[J]. Infrared and Laser Engineering, 2015, 44(8):2243-2249. (in Chinese)吴东江, 周思雨, 姚龙元,等. 飞秒激光烧蚀石英玻璃微槽截面形状仿真[J]. 红外与激光工程, 2015, 44(8):2243-2249.
[2] Yao J W, Zhang C Y, Liu H Yi, et al. High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses[J]. Opt Express, 2012, 20(2):905-911.
[3] Dufft D, Rosenfeld A, Das S K, et al. Femtosecond laser-induced periodic surface structures revisited-a comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3):034908.
[4] Wang C, Huo H B, Johnson M, et al. The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations[J]. Nanotechnology, 2010, 21:075304.
[5] Huang M, Zhao F, Cheng Y, et al. Origin of laser-induced near-subwavelength ripples:interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12):4062-4070.
[6] Liang F, Valle R, Chin S L. Mechanism of nanograting formation on the surface of fused silica[J]. Opt Express, 2012, 20(4):4389-4396.
[7] Borowiec A, Haugen H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Appl Phys Lett, 2003, 82(25):4462-4464.
[8] Jia T Q, Chen H X, Huang M, et al. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses[J]. Phys Rev B, 2005, 72:125429.
[9] Zhang C Y, Yao J W, Li C Q, et al. Asymmetric femtosecond laser ablation of silicon surface governed by the evolution of surface nanostructures[J]. Opt Express, 2013, 21(4):4439-4446.
[10] Shao Junfeng, Guo Jin, Wang Tingfeng. Theoretical research on dynamics of femto-second laser ablation crystal silicon[J]. Infrared and Laser Engineering, 2014, 43(8):2419-2424. (in Chinese)邵俊峰, 郭劲, 王挺峰. 飞秒激光与硅的相互作用过程理论研究[J]. 红外与激光工程, 2014, 43(8):2419-2424.
[11] Derrien T J -Y, Krger J, Itina T E, et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon[J]. Opt Express, 2013, 21(24):29643-29655.
[12] Bulgakova N M, Stoian R, Rosenfeld A, et al. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials:The problem of Coulomb explosion[J]. Applied Physics, 2005, 81(2):345-356.
[13] Bonse J, Rosenfeld A, Krger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses[J]. Journal of Applied Physics, 2009, 106:104910.
[14] Zhang C Y, Yao J W, Liu H Y, et al. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses[J]. Optics Letters, 2012, 37(6):1106-1108.
[15] Sipe J E, Young J F, Preston J S, et al. Laser-induced periodic surface structure[J]. Theory Phys Rev B, 1983, 27:1141.
[16] Jia X, Jia T Q, Peng N N, et al. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging[J]. Journal of Applied Physics, 2014, 115(14):143102.
[17] Huo Y, Jia T, Feng D, et al. Formation of high spatial frequency ripples in stainless steel irradiated by femtosecond laser pulses in water[J]. Laser Physics, 2013, 23(5):377-382.
[18] Obara G, Shimizu H, Enami T, et al. Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses[J]. Optics Express, 2013, 21(22):26323-26334.
[19] Harzic R L, Stracke F, Zimmermann H. Formation mechanism of femtosecond laser-induced high spatial frequency ripples on semiconductors at low fluence and high repetition rate[J]. Journal of Applied Physics, 2013, 113:183503.