[1] Fujishiro Y, Hench L L, Oonishi H. Quantitative rates of in vivo bone generation for Bioglass and hydroxyapatite particles as bone graft substitute.[J]. Journal of Materials Science Materials in Medicine, 1997, 8(11):649-652.
[2] Mohammadi H, Hafezi M, Nezafati N, et al. Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair:bioactivity and biological properties[J]. Journal of Ceramic Science Technology, 2013, 5(1):1-12.
[3] Gao Jianyong, Wang Ming, Tian Gang, et al. Preparation of microdosage silicon-doped hydroxyapatite and its effect on functional activity of osteoblasts[J]. Academic Journal of Second Military Medical University, 2016, 37(4):405-410.(in Chinese)高建勇, 王铭, 田刚, 等. 微量硅掺杂改性羟基磷灰石的制备及对成骨细胞功能活性的影响[J].第二军医大学学报, 2016, 37(4):405-410.
[4] Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid[J]. Journal of Non-Crystalline Solids, 1992, 143(5):84-92.
[5] Yong-Hoon Jeong, Han-Cheol Choe, William A Brantley. Hydroxyapatite-silicon film deposited on Ti-Nb-10Zr by electrochemical and magnetron sputtering method[J]. Thin Solid Films, 2016, 620:114-118.
[6] Bogya E S, Kroly Z, Barabs R. Atmospheric plasma sprayed silica-hydroxyapatite coatings on magnesium alloy substrates[J]. Ceramics International, 2015, 41(4):6005-6012.
[7] Yang Y L, Paital S R, Dahotre N B. Wetting and bioactivity of laser processed CaP coating with presence and variation of SiO2 on Ti-6Al-4V[J]. Materials Technology, 2013, 25(3-4):137-142.
[8] Yang Y, Serpersu K, He W, et al. Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti-6Al-4V[J]. Materials Science Engineering C, 2011, 31(8):1643-1652.
[9] Gough J E, Jones J R, Hench L L. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials[J]. Biomaterials, 2004, 25(11):2039-2046.
[10] Hing K A, Revell P A, Smith N, et al. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds.[J].Biomaterials, 2006, 27(29):5014-5026.
[11] Kurz W, Fisher D J. Fundamentals of Solidification[M]. Li Jianguo, Hu Qiaodan, transtlated. Beijing:Higher Education Press, 2010:115-132. (in Chinese) Kurz W, Fisher D J. 凝固原理[M]. 李建国,胡侨丹, 译. 北京:高等教育出版社, 2010:115-132.
[12] Yan Shixing, Dong Shiyun, Xu Binshi, et al. Effect of molten pool convection on pores and elements distribution in the process of laser cladding[J]. Infrared Laser Engineering, 2014, 39(4):741-745.
[13] Chen Chuanzhong, Wang Diangang, Xu Ping, et al.Microstructure of laser cladding hydroxyapatite bioceramic gradient coatings[J]. Chinese Journal of Lasers, 2004, 31(8):1021-1024. (in Chinese)陈传忠, 王佃刚, 徐萍,等. 激光熔覆HA生物陶瓷梯度涂层的微观组织结构[J]. 中国激光, 2004, 31(8):1021-1024.
[14] Li Fuquan, Wang Shuli, Chen Yanbin, et al. Investigation of bioceramic composite coatings fabricated by laser cladding on Ti6Al4V surface[J]. Chinese Journal of Lasers, 2015, 42(6):0603005. (in Chinese)李福泉, 王树立, 陈彦宾, 等. Ti6Al4V表面激光熔覆生物陶瓷复合涂层研究[J]. 中国激光, 2015, 42(6):0603005.
[15] Bai Yun, Li Shujun, Hao Yulin, et al. Electrochemical corrosion behavior of Ti-24Nb-4Zr-8Sn in phosphate buffer saline solutions[J]. Chinese Journal of Nonferrous Metals, 2010, 20(S1):1053-1056. (in Chinese)白芸, 李述军, 郝玉琳,等.磷酸盐缓冲溶液中Ti-24Nb-4Zr-8Sn合金的电化学腐蚀行为[J]. 中国有色金属学报, 2010, 20(S1):1053-1056.
[16] Li Ming, Wang Zhen. Bioactivity of gradient rare earths bioceramic coating produced by wide-band laser cladding[J]. Applied Laser, 2012, 32(5):25-30. (in Chinese)李明, 汪震. 宽带激光熔覆梯度稀土生物陶瓷涂层的生物活性[J]. 应用激光, 2012, 32(5):25-30.
[17] Huang Fengxiao, Jiang Zhonghao, Liu Ximing. Effects of parameters on microstructure of bonding interface formed by overlapping laser cladding[J]. Optics Precision Engineering, 2011, 19(2):316-322. (in Chinese)黄凤晓, 江中浩, 刘喜明. 激光熔覆工艺参数对横向搭接熔覆层结合界面组织的影响[J]. 光学精密工程, 2011, 19(2):316-322.