[1] Gaimard Q, Nguyen-Ba T, Larrue A, et al. Distributed-feedback GaSb-based laser diodes in the 2.3 to 3.3m wavelength range[J]. Semiconductor Lasers and Laser Dynamics Vi, 2014, 9134:91341J.
[2] CiviS, Hork V,imecek T, et al. GaSb based lasers operating near 2.3m for high resolution absorption spectroscopy[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2005, 61(13-14):3066-3069.
[3] Yang R Q. Interband Cascade Lasers:from concept to devices and applications[C]//Conference on Lasers and Electro-Optics, 2008:1-4.
[4] Shentu G L, Pelc J S, Wang X D, et al. Ultralow noise up-conversion detector and spectrometer for the telecom band[J]. Optics Express, 2013, 21(12):13986-13991.
[5] Hosoda T, Feng T, Shterengas L, et al. High power cascade diode lasers emitting near 2m[J]. Applied Physics Letters, 2016, 108(13):1089-1093.
[6] Dolginov L M, Druzhinina L V, Eliseev P G, et al. Injection heterolaser based on InGaAsSb four-component solid solution[J]. Soviet Journal of Quantum Electronics, 1978, 8(3):703-704.
[7] Reboul J R, Cerutti L, Rodriguez J B, et al. Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si[J]. Applied Physics Letters, 2011, 99(12):511-515.
[8] Apiratikul P, He L, Richardson C J K. 2m laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate[J]. Applied Physics Letters, 2013, 102(23):231101.
[9] Rong J M, Xing E N, Zhang Y, et al. Low lateral divergence 2 mm InGaSb/AlGaAsSb broad-area quantum well lasers[J]. Optics Express, 2016, 24(7):7246-7252.
[10] Zhang Y G, Li A Z, Zheng Y L, et al. MBE grown 2.0m InGaAsSb/AlGaAsSb MQW ridge waveguide laser diodes[J]. Journal of Crystal Growth, 2001, 227(227):582-585.
[11] Li Z G, Liu G J, You M H, et al. 2.0m room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure[J]. Laser Physics, 2009, 19(6):1230-1233.
[12] Zhang Yu, Tang Bao, Xu Yingqiang, et al. Molecular beam epitaxy growth of in GaSb/AlGaAsSb strained quantum well diode lasers[J]. Journal of Semiconductors, 2011, 32(10):103002.
[13] Liao Y P, Zhang Y, Yang C A, et al. High-power, high-efficient GaSb-based quantum well laser diodes emitting at 2 mum[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6):672-675.
[14] Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6m room-temperature laser diodes with InGaAsSb/AlGaAsSb type I quantum-wells[J]. Journal of Infrared and Millimeter Waves, 2017, 36(3):257-260.
[15] Xing J L, Zhang Y, Xu Y Q, et al. High quality above 3m mid-infrared InGaAsSb/AlGaInAsSb multiple-quantum well grown by molecular beam epitaxy[J]. Chinese Physics B, 2014, 23(1):454-457.
[16] Xing J L, Zhang Y, Liao Y P, et al. Room-temperature operation of 2.4m InGaAsSb/AlGaAsSb quantum-well laser diodes with low-threshold current density[J]. Chinese Physics Letters, 2014, 31(5):054204.
[17] Gaimard Q, Nguyen-Ba T, Larrue A, et al. Distributed-feedback GaSb-based laser diodes in the 2.3 to 3.3m wavelength range[C]//Semiconductor Lasers and Laser Dynamics VI, 2014:91341J.
[18] Liau Z L, Flanders D C, Walpole J N, et al. A novel GaInAsP/InP distributed feedback laser[J]. Applied Physics Letters, 1985, 46(3):221-223.
[19] Kogelnik H. Coupled-wave theory of distributed feedback lasers[J]. Journal of Applied Physics, 1972, 43(5):2327-2335.
[20] Yang C A, Zhang Y, Liao Y P, et al. 2-m single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chinese Physics B, 2016, 25(2):024204.
[21] Haring K, ViheriaLaJ, Viljanen M R, et al. Laterally-coupled distributed feedback InGaSb/GaSb diode lasers fabricated by nanoimprint lithography[J]. Electronics Letters, 2010, 46(16):1146-1147.
[22] Viheriala J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography[J]. IEEE Photonics Technology Letters, 2016, 28(11):1233-1236.
[23] Salhi A, Barat D, Romanini D, et al. Single-frequency Sb-based distributed-feedback lasers emitting at 2.3m above room temperature for application in tunable diode laser absorption spectroscopy[J]. Applied Optics, 2006, 45(20):4957-4965.
[24] Li H, Yang C A, Xie S W, et al. Laterally-coupled disributed feedback lasers with optimized gratings by holographic lithography etching[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6):147-151.