[1] Martín-Palma R J. Spectrally selective coatings on glass: solar-control and low-emissivity coatings [J]. Journal of Nanophotonics, 2009, 3: 030305. doi:  10.1117/1.3240868
[2] Yu H, Xu G, Shen X, et al. Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings [J]. Progress in Organic Coatings, 2009, 66(2): 161-166. doi:  10.1016/j.porgcoat.2009.07.002
[3] Cao Feifei, Ji Honghu, Yu Mingfei, et al. Effects of low emissivity material coating site on wall temperature and infrared characteristics of exhaust system [J]. Infrared and Laser Engineering, 2020, 49(10): 20190131. (in Chinese)
[4] Feng Yunsong, Lu Yuan, Ling Yongshun. Influence of surface emissivity on temperature and infrared radiation characteristics of aircraft skin [J]. Infrared and Laser Engineering, 2013, 42(2): 294-299. (in Chinese) doi:  10.3969/j.issn.1007-2276.2013.02.004
[5] Sun Xianming, Wang Haihua, Shen Jin, et al. Scattering of polarized light by randomly oriented coated spheroidal particle [J]. Acta Physica Sinica, 2011, 60(11): 378-384. (in Chinese) doi:  10.7498/aps.60.114216
[6] Gao Jiadong, Zhao Changying, Ye Qiang. Solar selective absorber based on particle-scattering effect [J]. Acta Energiae Solaris Sinica, 2019, 40(4): 921-927. (in Chinese)
[7] Appleyard P G, Davies N. Modelling infrared extinction of high aspect ratio, highly conducting small particles [J]. Journal of Optics a-Pure and Applied Optics, 2004, 6(10): 977-990. doi:  10.1088/1464-4258/6/10/008
[8] Wang Boxiang, Zhao Changying. Effect of anisotropy on thermal radiation transport in porous ceramics [J]. Journal of Engineering Thermophysics, 2018, 39(2): 395-399. (in Chinese)
[9] Wang L, Liu C, Xu G, et al. Influences of morphology and floating rate of CeO2 fillers on controlling infrared emissivity of the epoxy-silicone resin based coatings [J]. Materials Chemistry and Physics, 2019, 229: 380-386. doi:  10.1016/j.matchemphys.2019.03.009
[10] 邵春明. 低红外发射率涂层(LIREC)的组成结构与性能研究[D]. 南京: 南京航空航天大学, 2010.

Shao Chunming. Composition, structures and properties of low infrared emissivity coatings (LIREC) [D]. Nanjing: Nanjing University of Aeronautics and Astronautic, 2010. (in Chinese)
[11] Yuan L, Weng X, Deng L. Calculation of infrared properties of low emissivity coatings containing metallic flake pigments [J]. Chinese Optics Letters, 2013, 11(13): 12-15.
[12] Jian S, Xie J, Liu Y, et al. Modified Kubelka's layer model for calculation of infrared properties of low emissivity coatings with optically-rough surface [J]. Infrared Physics & Technology, 2017, 83: 177-181.
[13] Chen S, Yuan L, Weng X, et al. Modeling emissivity of low-emissivity coating containing horizontally oriented metallic flake particles [J]. Infrared Physics & Technology, 2014, 67: 377-381.
[14] Song K, Xie M, Ai Q, et al. Effects of size, volume fraction, and orientation of metallic flake particles on infrared radiation characteristics of Al/acrylic resin composite coatings [J]. Progress in Organic Coatings, 2020, 145: 105680. doi:  10.1016/j.porgcoat.2020.105680
[15] Sun Rui, He Xiaokai, Gao Meng, et al. Study on the influence of aluminum powder on emissivity for infrared camouflage coatings [J]. China Coatings, 2016, 31(6): 59-62. (in Chinese) doi:  10.13531/j.cnki.china.coatings.2016.06.013
[16] 贾雪艳. 铝粉的表面处理及其在水性涂料中的应用[D]. 兰州: 兰州大学, 2019.

Jia Xueyan. Surface treatment of aluminum powder and its application in waterborne coatings [D]. Lanzhou: Lanzhou University, 2019. (in Chinese)
[17] 谈和平, 夏新林, 刘林华, 等. 红外辐射特性与传输的数值计算: 计算热辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006.
[18] Palik E D. Handbook of Optical Constants of Solids [M]. San Diego: Academic Press, 1985.
[19] Cheng Z, Wang F, Wang H, et al. Effect of embedded polydisperse glass microspheres on radiative cooling of a coating [J]. International Journal of Thermal Sciences, 2019, 140: 358-367. doi:  10.1016/j.ijthermalsci.2019.03.014
[20] Huang Z, Ruan X. Nanoparticle embedded double-layer coating for daytime radiative cooling [J]. International Journal of Heat and Mass Transfer, 2017, 104: 890-896. doi:  10.1016/j.ijheatmasstransfer.2016.08.009
[21] Muinonen K, Nousiainen T, Lindqvist H, et al. Light scattering by Gaussian particles with internal inclusions and roughened surfaces using ray optics [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(14-16): 1628-1639.
[22] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles [M]. New York: John Wiley & Sons, 2008.
[23] Alcaraz de la Osa R, Garcia Alonso A, Ortiz D, et al. Extension of the kubelka-munk theory to an arbitrary substrate: a monte carlo approach [J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2016, 33(10): 2053-2060. doi:  10.1364/JOSAA.33.002053
[24] Miller F J, Koenigsdorff R W. Thermal modeling of a small-particle solar central receiver [J]. Journal of Solar Energy Engineering-Transactions of the Asme, 2000, 122(1): 23-29. doi:  10.1115/1.556277
[25] Zhang Pengfei. Preparation by sol-gel and properties of mid-to-high solar absorber coating [D]. Nanjing: Nanjing University of Science & Technology, 2018. (in Chinese)