[1] Alfano R. The Supercontinuum Laser Source[M]. New York:Springer, 2006.
[2] Dudley J, Taylor R. Supercontinuum Generation in Optical Fibers[M]. New York:Cambridge University Press, 2010.
[3] Wei Zhiyi. The 2005 Nobel prize in physics and optical frequency comb techniques[J]. Physics, 2006, 35(3):213-217. (in Chinese)魏志义. 2005年诺贝尔物理学奖与光学频率梳[J]. 物理,2006, 35(3):213-217.
[4] Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Optics Letters, 2001, 26(9):608-610.
[5] Wildanger D, Rittweger E, Kastrup L, et al. STED microscopy with a supercontinuum laser source[J]. Optics Express, 2008, 16(13):9614-9621.
[6] Brown D M, Shi K, Liu Z, et al. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents[J]. Optics Express, 2008, 16(12):8457-8471.
[7] Wallace J. IR supercontinuum laser helps defend helicopters[N]. Laser Focus World, 2010, Sept 3.
[8] Qian Liejia. Development and integration of wide tunable mid infrared femtosecond and narrow band long pulse laser devices[J]. Infrared and Laser Engineering, 2006, 35(z3):43. (in Chinese)钱列加. 宽调谐中红外飞秒及窄带长脉冲激光器件的研制和集成[J]. 红外与激光工程, 2006, 35(z3):43.
[9] Deng Ying, Zhu Qihua, Zeng Xiaoming, et al. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser Optoelectronics Progress, 2006, 43(8):21-26. (in Chinese)邓颖, 朱启华, 曾小明, 等. 超短中红外激光脉冲的产生及其发展状况[J]. 激光与光电子进展, 2006, 43(8):21-26.
[10] Chen K, Alam S U, Price J H V, et al. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power[J]. Optics Express, 2010, 18(6):5426-5432.
[11] Sanghera J S, Aggarwal I D, Busse L E, et al. Chalcogenide optical fibers target mid-IR applications[J]. Laser Focus World, 2005, 41(4):83-87.
[12] Harbold J M, Ilday F O, Wise F W, et al. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching[J]. IEEE Photonics Technology Letters, 2002, 14(6):822-824.
[13] Slusher R E, Lenz G, Hodelin J, et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers[J]. Journal of the Optical Society of America B-Optical Physics, 2004, 21(6):1146-1155.
[14] Feng X, Mairaj A K, Hewak D W, et al. Nonsilica glasses for holey fibers[J]. Journal of Lightwave Technology, 2005, 23(6):2046-2054.
[15] Petersen C R, Mller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11):830-834.
[16] Cheng T L, Nagasaka K, Tuan T H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1m in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9):2117-2120.
[17] Zhao Z M, Wang X S, Dai S X, et al. 1.5-14m midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(22):5222-5225.
[18] Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2.0-16m in a low-loss telluride single-mode fiber[J]. Laser Photonics Reviews, 2017, 11(2):1700005.
[19] Qin G S, Yan X, Kito C, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28m in a fluoride fiber[J]. Applied Physics Letters, 2009, 95(16):584.
[20] Xia C N, Xu Z, Islam M N, et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4m with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):422-434.
[21] Yang W, Zhang B, Xue G, et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2m MOPA system[J]. Optics Letters, 2014, 39(7):1849-1852.
[22] Liu K, Liu J, Shi H X, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 2014, 22(20):24384-24391.
[23] Liu K, Liu J, Shi H X, et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier[C]//Advanced Solid State Lasers, 2014, AM3A.6.
[24] Zheng Z J, Ouyang D Q, Zhao J Q, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 2016, 4(4):135-139.
[25] Yin K, Zhang B, Yang L Y, et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with 1 W power beyond 3.8m[J]. Optics Letters, 2017, 42(12):2334-2337.
[26] Poulain M, Poulain M, Lucas J. Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au Nd3+[J]. Materials Research Bulletin, 1975, 10(4):243-246.
[27] Zhu X, Peyghambarian N. High-power ZBLAN glass fiber lasers:review and prospect[J]. Advances in OptoElectronics, 2010(1687-563X):149-154.
[28] Wang J S, Vogel E M, Snitzer E. Tellurite glass:a new candidate for fiber devices[J]. Optical Materials, 1994, 3(3):187-203.
[29] Ghosh G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses[J]. Journal of the American Ceramic Society, 1995, 78(10):2828-2830.
[30] Domachuk P, Wolchover N A, Cronin-Golomb M, et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 2008, 16(10):7161-7168.
[31] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5m[C]//SPIE 2013, 8898:889808.
[32] Shi H X, Feng X, Tan F Z, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optical Materials Express, 2016, 6(12):3967-3976.
[33] Yang L, Zhang B, Yin K, et al. 0.6-3.2m supercontinuum generation in a stepindex germania-core fiber using a 4.4 kW peak power pump laser[J]. Optics Express, 2016, 13(24):12600-12606.
[34] Yin K, Zhang B, Yao J, et al. 1.9-3.6m supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio[J]. Optics Letters, 2016, 41(21):5067-5070.
[35] Yin K, Zhang B, Yang L, et al. 30 W monolithic 2-3m supercontinuum laser[J]. Photonics Research, 2018, 6(2):123-126.
[36] O'donnell M D, Miller C A, Furniss D, et al. Fluorotellurite glasses with improved mid-infrared transmission[J]. Journal of Non-Crystalline Solids, 2003, 331(1-3):48-57.
[37] Liao G H, Chen Q P, Xing J J, et al. Preparation and characterization of new fluorotellurite glasses for photonics application[J]. Journal of Non-Crystalline Solids, 2009, 355(7):447-452.
[38] O'donnell M D, Richardson K, Stolen R, et al. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers:Glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization[J]. Journal of the American Ceramic Society, 2007, 90(5):1448-1457.
[39] Wang R, Meng X, Yin F, et al. Heavily erbium-doped low-hydroxyl fluorotellurite glasses for 2.7m laser applications[J]. Optical Material Express, 2013, 3(8):1127-1136.
[40] de Sousa D F, Zonetti L F C, Bell M J V, et al. On the observation of 2.8m emission from diode-pumped Er3+-and Yb3+-doped low silica calcium aluminate glasses[J]. Applied Physics Letters, 1999, 74(7):908-910.
[41] Yao C, He C, Jia Z, et al. Holmium-doped fluorotellurite microstructured fibers for 2.1m lasing[J]. Optics Letters, 2015, 40(20):4695-4698.
[42] Wang F, Wang K, Yao C, et al. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation[J]. Optics Letters, 2016, 41(3):634-637.
[43] Bei J F, Foo H T C, Qian G J, et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 2014, 4(6):1213-1226.
[44] Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 2002, 27(13):1180-1182.
[45] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4):1135-1184.
[46] Savelii I, Desevedavy F, Jules J C, et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation[J]. Optical Materials, 2013, 35(8):1595-1599.
[47] Jia Z, Yao C, Jia S, et al. Supercontinuum generation covering the entire transmission window of 0.4-5m in a tapered ultra-high NA all-solid fluorotellurite fiber[J]. Laser Physics Letters, 2018, 15:025102.
[48] Jia Z, Yao C, Jia S, et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber[J]. Applied Physics Letters, 2017, 110:261106.
[49] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber[J]. Applied Physics B-Lasers and Optics, 2003, 77(2-3):269-277.
[50] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Physical Review Letters, 2003, 90(11):113904.
[51] Klimczak M, Siwicki B, Skibinski P, et al. Coherent supercontinuum generation up to 2.3m in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion[J]. Optics Express, 2014, 22(15):18824-18832.
[52] Li N, Wang F, Yao C, et al. Coherent supercontinuum generation from 1.4 to 4m in a tapered fluorotellurite microstructured fiber pumped by a 1980 nm femtosecond fiber laser[J]. Applied Physics Letters, 2017, 110:061102.
[53] Zhan H, Shi T F, Zhang A D, et al. Nonlinear characterization on mid-infrared fluorotellurite glass fiber[J]. Materials Letters, 2014, 120:174-176.
[54] Chen Z, Taylor A J, Efimov A. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper[J]. Optics Express, 2009, 17(7):5852-5860.
[55] Yao C, Jia Z, Li Z, et al. 10-W-level mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. (Submitted).