[1] Zhou Xiaoqin, Hou Qiang, Liu Qiang, et al. Research status and tendency of measurement techniques for geometric features of micro/nano structures[J]. Journal of Beijing University of Technology, 2015, 41(3):327-339. (in Chinese)周晓勤, 侯强, 刘强,等. 微纳结构几何特征检测技术的研究现状与发展趋势[J]. 北京工业大学学报, 2015, 41(3):327-339.
[2] Mao Heng, Tao Louis, Chen Liangyi. Application and development of adaptive optics to three-dimensional in vivo deep tissue fluorescent microscopy[J]. Infrared and Laser Engineering, 2016, 45(6):0602001. (in Chinese)毛珩, Tao Louis, 陈良怡. 自适应光学技术在深层动态荧光显微成像中的应用和发展[J]. 红外与激光工程, 2016, 45(6):0602001.
[3] Qiu Lirong, Zhao Weiqian, Wang Xu, et al. Error analysis for a laser differential confocal radius measurement system[J]. Applied Optics, 2015, 54(5):1078-84.
[4] Cui Jianjun. Lateral resolution test for confocal laser scanning microscope[J]. Key Engineering Materials, 2014, 609-610(11):1159-1164.
[5] Giusca C L, Leach R K. Calibration of the Metrological Characteristics of Imaging Confocal Microscopes (ICMs)[M]. Britain:National Physical Laboratroy, 2012:17-62.
[6] Beraldin J A, Mackinnon D, Cournoyer L. Metrological characterization of 3D imaging systems:progress report on standards developments[J]. Anatomical Record, 2015, 151(2):107-117.
[7] Liu Jian, Li Mengzhou, Li Qiang, et al. Decoupling criterion based on limited energy loss condition for groove measurement using optical scanning microscopes[J]. Measurement Science Technology, 2016, 27(12):125014.
[8] Liu Jian, Gu Kang, Li Mengzhou, et al. 3D measurement decoupling criterion in optical microscopy[J]. Infrared and Laser Engineering, 2017, 46(3):0302001. (in Chinese)刘俭, 谷康, 李梦周,等. 光学显微三维测量解耦合准则[J]. 红外与激光工程, 2017, 46(3):0302001.
[9] Li Yao, Yang Yongying, Wang Chen, et al. Point diffraction in terference detection technology[J]. Chinese Optics, 2017,10(4):391-414. (in Chinese)李瑶, 杨甬英, 王晨, 等. 点衍射干涉检测技术[J]. 中国光学, 2017, 10(4):391-414.
[10] Cole R W, Jinadasa T, Brown C M. Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control[J]. Nature Protocols, 2011, 6(12):1929-1941.
[11] Xiao Yun, Zhang Yunhai, Wang Zhen, et al. Effect of incident laser on resolution of LSCM[J]. Optics and Precision Engineering, 2014, 22(1):31-38. (in Chinese)肖昀, 张运海, 王真, 等. 入射激光对激光扫描共聚焦显微镜分辨率的影响[J]. 光学精密工程, 2014, 22(1):31-38.
[12] Yu Qing, Yu Xiaofen, Cui Changcai, et al. Survey of parallel light source technology in parallel confocal measurement[J]. Chinese Optics, 2013, 6(5):652-659. (in Chinese)余卿, 余晓芬, 崔长彩,等. 并行共焦测量中的并行光源技术综述[J]. 中国光学, 2013, 6(5):652-659.
[13] Zeiss M F C. Confocal laser scanning microscopy[J]. Journal of Microscopy, 1995, 178(3):261-266.
[14] Cui Jianjun, Gao Sitian. Nanometer film thickness metrology and traceability based on grazing incidence X-ray reflectometry[J]. Acta Physica Sinica, 2014, 63(6):060601.(in Chinese)崔建军, 高思田. 基于X射线掠射法的纳米薄膜厚度计量与量值溯源研究[J]. 物理学报, 2014, 63(6):060601.
[15] Cui Jianjun. Study on metrological traceability through fabry-perot laser interferometer or atomic lattice spacing for micro displacement measurement[D]. Tianjin:Tianjin University, 2014. (in Chinese)崔建军. 基于Fabry-Perot干涉与原子晶格间距的微位移计量及溯源研究[D]. 天津:天津大学, 2014.
[16] Zhang Mingkai, Gao Sitian, Lu Rongsheng, et al. Ultraviolet scanning linewidth measuring system[J]. Infrared and Laser Engineering, 2015, 44(2):625-631. (in Chinese)张明凯, 高思田, 卢荣胜,等. 紫外扫描线宽测量系统的研究[J]. 红外与激光工程, 2015, 44(2):625-631.
[17] Sun Licun, Meng Weidong, Li Qiang, et al. Calculation and measurement of depth of field for microscope equipped with electronic ocular[J]. Optics and Precision Engineering, 2013, 21(5):1151-1159. (in Chinese)孙丽存, 孟伟东, 李强, 等. 电子目镜显微镜景深的确定与测量[J]. 光学精密工程, 2013, 21(5):1151-1159.