[1] William R Oegerle. ATLAST-9.2 m:a large-aperture deployable space telescope[C]//SPIE 2010, 7731:77312M.
[2] William R Arnold. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for integrated tools in the optimization process[C]//SPIE, 2015, 9573:95730G.
[3] Li Zongxuan, Jin Guang, Zhang Lei, et al. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4):532-541. (in Chinese)李宗轩, 金光, 张雷, 等. 3.5 m口径空间望远镜单块式主镜技术展望[J]. 中国光学, 2014,7(4):532-541.
[4] Zhu Junqing, Sha Wei, Chen Changzheng, et al. Position layout of rear three points mounting for space rectangular mirror[J]. Optics and Precision Engineering, 2015, 23(9):2562-2569. (in Chinese)朱俊青, 沙巍, 陈长征, 等. 空间长条形反射镜背部三支撑点的设置[J]. 光学精密工程, 2015, 23(9):2562-2569.
[5] Yan Yong, Jia Jiqiang, Jin Guang. Design of new type spaceborne lightweighted primary mirror support[J]. Optics and Precision Engineering, 2008, 16(8):1533-1539. (in Chinese)闫勇, 贾继强, 金光. 新型轻质大口径空间反射镜支撑设计[J]. 光学精密工程, 2008, 16(8):1533-1539.
[6] Xu Hong, Guan Yingjun. Structural design of 1m diameter space mirror component of space camera[J]. Optics and Precision Engineering, 2013, 21(6):1488-1495. (in Chinese)徐宏, 关英俊. 空间相机1 m口径反射镜组件结构设计[J]. 光学精密工程, 2013, 21(6):1488-1495.
[7] Yoder P R. Opto-Mechanical Systems Design[M]. Zhou Haixian, Cheng Yunfang, translated. Beijing:China Machine Press, 2008. (in Chinese) Yoder P R. 光机系统设计[M]. 周海宪,程云芳, 译. 北京:机械工业出版社, 2008.
[8] Zhang Limin, Wang Fugao, An Qichang, et al. Application of Bipod to supporting structure of minitype reflector[J]. Optics and Precision Engineering, 2015, 23(2):438-443. (in Chinese)张丽敏, 王富国, 安其昌, 等. Bipod柔性结构在小型反射镜支撑中的应用[J]. 光学精密工程, 2015, 23(2):438-443.
[9] Zhou Yuxiang, Shen Xia. Structure design of backside bipod flexure mount for space reflector[J]. Laser Technology, 2017, 41(1):142-145. (in Chinese)周宇翔, 沈霞. 空间反射镜背部双脚架柔性支撑结构设计[J]. 激光技术, 2017, 41(1):142-145.
[10] Hom C, Irwin J W, Stubbs D M, et al. Design of bipod flexure mounts for the IRIS spectrometer[C]//SPIE, 2013, 8836:88360Q.
[11] Kaercher Hans J, Peter Eisentraeger, Martin S. Mechanical principles of large mirror supports[C]//SPIE, 2010, 7733:77332O.
[12] Curtis Baffes, Terry Mast. Primary mirror segmentation studies for the Thirty Meter Telescope[C]//SPIE, 2008, 7018:70180S.
[13] Cayrel M. E-ELT optomechanics:overview[C]//SPIE, 2012, 8444:84441X.
[14] Bittner H, Erdmann M, Haberler P. SOFIA primary mirror assembly:structural properties and optical performance[C]//SPIE, 2003, 4857:266-273.
[15] Sean C Casey. The SOFIA program:astronomers return to the stratosphere[C]//SPIE, 2006, 6267:62670Q.
[16] Paul Keas, Rick Brewster. SOFIA Telescope modal survey test and test-model correlation[C]//SPIE, 2010, 7738:77380K.
[17] Charlie Atkinson, Scott Texter. Status of the JWST optical telescope element[C]//SPIE, 2006, 6265:62650T.
[18] Doyle K B, Genberg V L, Michaels G J. Integrated Optomechanical Analysis[M]. 2nd ed. Lian Huadong, Wang Xiaoyong, Xu Peng, translated. Beijing:National Defense Industry Press, 2015. (in Chinese)凯斯B道尔, 维克托L基恩伯格, 格雷戈里J迈克尔斯. 光机集成分析[M]. 第2版. 连华东, 王小勇, 徐鹏, 译. 北京:国防工业出版社, 2015.
[19] Nelson J E, Lubliner J, Mast T S. Telescope mirror supports:plate deflection on point supports[C]//SPIE, 1982, 332:212-228.
[20] Cho M K, Richard R M, Vukobratovich D. Optimum mirror shapes and supports for light weight mirrors subjected to self-weight[C]//SPIE, 1989, 1167:2-19.
[21] William R Arnold, Matthew Fitagerald, Rubin Jaca Rosa, et al. Next generation lightweight mirror modeling software[C]//SPIE, 2013, 8836:883601.
[22] William R Arnold, Ryan M Bevan, H Philip Stahl. Integration of mirror design with suspension system using NASA's new mirror modeling software[C]//SPIE, 2013, 8836:88360J.
[23] William R Arnold. Recent updates to the Arnold Mirror Modeler and integration into the evolving NASA overall design system for large space-based optical systems[C]//SPIE, 2015, 9573:95730H.
[24] Fan Lei, Yang Hongbo, Zhang Jingxu, et al. Lightweight design for 2 m SiC arch mirror[J]. Opto-Electronic Engineering, 2010, 37(10):71-76. (in Chinese)范磊, 杨洪波, 张景旭, 等. 2 m SiC反射镜拱形轻量化结构设计[J]. 光电工程, 2010, 37(10):71-76.
[25] Geng Qixian, Yang Hongbo, Li Yanwei. Optimum method of backside support position for large-aperture primary mirror with flat rear surface[J]. Optical Technology, 2007, 33(6):889-895. (in Chinese)耿麒先, 杨洪波, 李延伟. 大口径平背形主镜背部支撑位置优化计算方法[J]. 光学技术, 2007, 33(6):889-895.
[26] Wang Shuxin, Li Jinglin, Zhang Fan, et al. Optimization of large aperture space reflector based on RSM[J]. Infrared and Laser Engineering, 2013, 42(S2):291-297. (in Chinese)王书新, 李景林, 张帆, 等. 响应面模型的大口径空间反射镜优化[J]. 红外与激光工程, 2013, 42(S2):291-297.
[27] Ding Ke, Qi Bo, Bian Jiang. Integrated opto-mechanical optimization analysis of large-aperture primary mirror's support position[C]//SPIE, 2016, 9682:968213.
[28] Wang Kejun, Dong Jihong, Xuan Ming, et al. Compound support structure for large aperture mirror of space remote sensor[J]. Optics and Precision Engineering, 2016, 24(7):1719-1730. (in Chinese)王克军, 董吉洪, 宣明, 等. 空间遥感器大口径反射镜的复合支撑结构[J]. 光学精密工程, 2016, 24(7):1719-1730.
[29] Lan Bin, Yang Hongbo, Wu Xiaoxia, et al. Optimal design of 620 mm ground mirror assembly[J]. Infrared and Laser Engineering, 2017, 46(1):0118001. (in Chinese)兰斌, 杨洪波, 吴小霞, 等. 620 mm口径地基反射镜组件优化设计[J]. 红外与激光工程, 2017, 46(1):0118001.
[30] Colin Cunningham, Adrian Russell. Precision engineering for astronomy:historical origins and the future revolution in ground-based astronomy[J]. Phil Trans R Soc A, 2012, 370(1973):3852-3886.
[31] Gelman A, Maliah E. Mechanism for passive thermal compensation in harsh environment[C]//SPIE, 2007, 6715:671506.
[32] Virginia Ford, Rick Parks. Passive thermal compensation of the optical bench of the galaxy evolution explorer[C]//SPIE, 2004, 5528:171-180.
[33] Yan Conglin, Liu Weilin, Wu Qinzhang. Design and analysis on a kind of primary reflector support structure based on thermal compensation principle[C]//SPIE, 2012, 8415:841511.
[34] Bayar Mete. Lens barrel optomechanical design principles[J]. Optical Engineering, 1981, 20(2):181-186.
[35] James J Herbert. Techniques for deriving optimal bondlines for athermal bonded mounts[C]//SPIE, 2006, 6288:62880J.
[36] Christopher Monti. Athermal bonded mounts:Incorporating aspect ratio into a closed-form solution[C]//SPIE, 2007, 6665:666503.
[37] Guo Junli, An Yuan, Li Zongxuan, et al. Bonding technique of mirror components in space camera[J]. Infrared and Laser Engineering, 2016, 45(3):0313002. (in Chinese)郭骏立, 安源,李宗轩, 等. 空间相机反射镜组件的胶结技术[J]. 红外与激光工程, 2016, 45(3):0313002.
[38] Yang Liwei, Li Zhilai, Xue Donglin. Analysis and test for effect of structural adhesive shrinkage during curing on mirror surface[J]. Optical Technology, 2014, 40(4):307-312. (in Chinese)杨利伟, 李志来, 薛栋林. 结构胶固化收缩对反射镜面形影响的分析与试验[J]. 光学技术, 2014, 40(4):307-312.
[39] Dong Deyi, Li Zhilai. Simulation and experiment of influence of adhesive curing on reflective mirror surface[J]. Optics and Precision Engineering, 2014, 22(10):2698-2707. (in Chinese)董得义, 李志来. 胶层固化对反射镜面形影响的仿真与试验[J]. 光学精密工程, 2014, 22(10):2698-2707.
[40] Doyle K B, Michels G J, Genberg V L. Athermal design of nearly incompressible bonds[C]//SPIE, 2002, 4771:296-303.
[41] Wang Dong, Yan Yong, Jin Guang. Nonlinear analysis method for predicting optical surface deformations resulted from assembly process[C]//SPIE, 2010, 7654:76540A.