[1] Li Y. Research on test method of infrared smoke shielding effect [D]. Changchun: University of Science and Technology, 2020. (in Chinese)
[2] Liu G S, Guan H, Lv H P, et al. Effect of diameter graphite particles on infrared & 10.6 μm laser attenuation performance [J]. Chinese Journal of Energetic Materials, 2009(2): 9-12. (in Chinese)
[3] Cai W B, Wang N Y, Song D M, et al. Effect of diameter graphite particles on IR extinction characteristics [J]. Infrared Technology, 2003, 25(5): 68-71. doi:  10.3969/j.issn.1001-8891.2003.05.018
[4] Zhang J Y, Song X P. Research on application of carbon fiber in interferenceand energetic materials [J]. Electro-Optic Technology Application, 2022, 37(1): 40-43, 78. (in Chinese)
[5] Appleyard P G. Infrared extinction performance of high aspectratio carbon nanoparticles [J]. Journal of Optics A: Pure and Applied Optics, 2006, 8: 101-113.
[6] Wang X Y, Dong W J, Pang M H, et al. Granular characteristics and infrared extinction coefficients of graphite aerosol [J]. Procedia Engineering, 2015, 102: 1238-1244.
[7] Sun Y Y, Wang X Y, Dong W J, et al. Study on the influence of carbon fiber’s particle size on infrared/millimeter wave inter-ference performance [J]. Infrared and Laser Engineering, 2022, 51(3): 20210254. (in Chinese) doi:  10.3788/IRLA20210254
[8] Chen N, Pan G P, Gua H. Study on IR extinction performance of graphite micro-powder smoke in vacuum [J]. Initiators and Pyrotechnics, 2007(3): 34-36. (in Chinese)
[9] Ning G T, Li P, Cui Y L, et al. Flowability and infrared interference properties of modified graphite flake with hydrophobic nano-silica [J]. Chinese Journal of Energetic Materials, 2015, 23(12): 1217-1220. (in Chinese)
[10] Zhang D Z. Research on the composite technology and performance of multi-spectrum interference materials[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)
[11] Li Y, Qiao X J, Ren Q G, et al. Preparation and microwave absorbing properties NiCo/NiFe coated carbon fibers [J]. Aerospace Materials and Technology, 2012, 42(3): 29-33. (in Chinese)
[12] Wang H X, Liu D Z, Song Z B, et al. Study on infrared extinction performance of carbon nanofibers smoke screen [J]. Infrared Technology, 2007, 29(6): 324-327. (in Chinese)
[13] Li K, Wang X Y, Gao Y Q, et al. Complex refractive index and extinction performance ofgraphene in infrared bands [J]. Infrared and Laser Engineering, 2021, 50(4): 20200246. (in Chinese) doi:  10.3788/IRLA20200246
[14] Santhanam K S V. Graphene: Preparations, properties, appli-cations, and prospects [J]. MRS Bulletin, 2020, 45(10): 867. doi:  https://doi.org/10.1557/mrs.2020.262
[15] ChemT J, Moosa A A, Abed M S. Graphene preparation and graphite exfoliation [J]. Turkish Journal of Chemistry, 2021, 45(3): 493-519. doi:  10.3906/kim-2101-19
[16] Li X D. Preparation of graphene oxide and its application as substrates for SERS [J]. Journal of Chemistry, 2018, 2018: 1-5. doi:  10.1155/2018/8050524
[17] Wang X Y. Testing the infrared extinction characteristics of red phosphorous smoke screen by thermal imaging method [J]. Journal of Anti-Chemistry, 2007(3): 63-65.
[18] Zhao X Y, Hu Y H, Gu Y L, et al. A comparison of infrared extinction performances of bioaerosols and traditional smoke materials [J]. Optik, 2019, 181: 293-300. doi:  10.1016/j.ijleo.2018.12.052
[19] Chen H, Gao X B, Xu X C, et al. Middle and far infrared interference properties of CNT/graphene/carbon composites smoke screen [J]. Chinese Journal of Energetic Materials, 2019, 27(3): 249-254. (in Chinese)
[20] Liu Q H, Liu H F, Dai X D, et al. Infrared interfering performance of graphene smoke screen [J]. Infrared Technology, 2019, 41(11): 1071-1076. (in Chinese)
[21] Chen Z. Study on preparation and extinction properties of composite materials as combustion-type anti-infrared smoking agent [D]. Nanjing: Nanjing University of Science & Tech-nology, 2018. (in Chinese)