[1] Zhang W, You L, Li H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature[J]. Science China Physics, Mechanics Astronomy, 2017, 60(12):120314.
[2] Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93% system efficiency[J]. Nature Photonics, 2013, 7(3):210-214.
[3] Zhang W J, Yang X Y, Li H, et al. Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face[J]. Superconductor Science and Technology, 2018, 31(3):035012.
[4] Yang X Y, Li H, Zhang W J, et al. Superconducting nanowire single photon detector with on-chip bandpass filter[J]. Optics Express, 2014, 22(13):16267-16272.
[5] Konstantin S, Yury V, Alexander D, et al. Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers[J]. Applied Physics Express, 2015, 8(2):022501.
[6] Esmaeil Zadeh I, Los J W N, Gourgues R B M, et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution[J]. APL Photonics, 2017, 2(11):111301.
[7] Korzh B, Zhao Q, Frasca S, et al. Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector[J]. arXiv Preprint arXiv, 2018, 1804:06839.
[8] Inderbitzin K, Engel A, Schilling A, et al. An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays[J]. Applied Physics Letters, 2012, 101(16):162601.
[9] Marsili F, Bellei F, Najafi F, et al. Efficient single photon detection from 500 nm to 5m wavelength[J]. Nano Letters, 2012, 12(9):4799-4804.
[10] Wang Y, Li H, You L, et al. Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4):2200904.
[11] Chen L, Schwarzer D, Lau J A, et al. Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution[J]. Optics Express, 2018, 26(12):14859-14868.
[12] Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19):190501.
[13] Tang Y L, Yin H L, Zhao Q, et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network[J]. Physical Review X, 2016, 6(1):011024.
[14] Tang Y L, Yin H L, Chen S J, et al. Measurement-device-independent quantum key distribution over 200 km[J]. Physical Review Letters, 2014, 113(19):190501.
[15] Abelln C, Acn A, Alarcn A, et al. Challenging local realism with human choices[J]. Nature, 2018, 557(7704):212-216.
[16] Sun Q C, Mao Y L, Chen S J, et al. Quantum teleportation with independent sources and prior entanglement distribution over a network[J]. Nat Photon, 2016, 10(10):671-675.
[17] Liu Y, Yuan X, Li M H, et al. High-speed device-independent quantum random number generation without a detection loophole[J]. Physical Review Letters, 2018, 120(1):010503.
[18] Guan J Y, Xu F, Yin H L, et al. Observation of quantum fingerprinting beating the classical limit[J]. Physical Review Letters, 2016, 116(24):240502.
[19] Wang H, Li W, Jiang X, et al. Toward scalable boson sampling with photon loss[J]. Physical Review Letters, 2018, 120(23):230502.
[20] He Y, Ding X, Su Z E, et al. Time-bin-encoded boson sampling with a single-photon device[J]. Physical Review Letters, 2017, 118(19):190501.
[21] Cornwell D M. NASA's optical communications program for 2015 and beyond[C]//SPIE, 2015, 9354:93540E.
[22] Grein M E, Kerman A J, Dauler E A, et al. An optical receiver for the Lunar Laser Communication Demonstration based on photon-counting superconducting nanowires[C]//SPIE, 2015, 9492:949208.
[23] Li H, Chen S, You L, et al. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging[J]. Optics Express, 2016, 24(4):3535-3542.
[24] Xue L, Li Z, Zhang L, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength[J]. Optics Letters, 2016, 41(16):3848-3851.
[25] Zhu J, Chen Y, Zhang L, et al. Demonstration of measuring sea fog with an SNSPD-based lidar system[J]. Scientific Reports, 2017, 7(1):15113.
[26] Shangguan M, Xia H, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(18):3541-3544.