[1] Li Qihan, Wang Yanrong. The Problem of Aero-engine Structural Strength Design[M]. Shanghai:Press of Shanghai Jiaotong University, 2014. (in Chinese)李其汉, 王延荣. 航空发动机结构强度设计问题[M]. 上海:上海交通大学出版社, 2014.
[2] Wagner L, Wollmann M, Mhaede M, et al. Surface layer properties and fatigue behavior in Al 7075-T73 and Ti-6Al-4V:Comparing results after laser peening; shot peening and ball-burnishing[J]. International Journal of Structural Integrity, 2011, 2(2):185-199.
[3] Huang S, Zhou J Z, Sheng J, et al. Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061-T6 aluminum alloy[J]. International Journal of Fatigue, 2013, 47(2):292-299.
[4] Shen Xiaojun, Wang Cheng, An Zhibin, et al. Effects of oblique laser shock processing on rotary bending fatigue of aero-engine fan shaft[J]. Infrared and Laser Engineering, 2015, 44(12):3548-3553. (in Chinese)沈晓骏, 汪诚, 安志斌, 等. 斜激光冲击对航空发动机风扇轴弯曲疲劳性能的影响[J]. 红外与激光工程, 2015, 44(12):3548-3553.
[5] Kong Dejun, Zhou Chaozheng, Wu Yongzhong. Mechanism on residual stress of 304 stainless steel by laser shock processing[J]. Infrared and Laser Engineering, 2010, 39(4):736-740. (in Chinese)孔德军, 周朝政, 吴永忠. 304不锈钢激光冲击处理后的残余应力产生机理[J]. 红外与激光工程, 2010, 39(4):736-740.
[6] Cao Yupeng, Feng Aixin, Xue Wei, et al. Experimental research and theoretical study of laser shock wave induced dynamic strain on 2024 aluminum alloy sufface[J]. Chinese J Laser, 2014, 41(9):0903004. (in Chinese)曹宇鹏, 冯爱新, 薛伟, 等. 激光冲击波诱导2024铝合金表面动态应变特性试验研究及理论分析[J]. 中国激光, 2014, 41(9):0903004.
[7] Chen Ding, Li Wenxian. Cryogenic treatment of aluminum and aluminum alloys[J]. Chinese Journal of Nonferrous Metals, 2000, 10(6):891-895. (in Chinese)陈鼎, 黎文献. 铝和铝合金的深冷处理[J]. 中国有色金属学报, 2000, 10(6):891-895.
[8] Wang J, Fu R, Li Y, et al. Effects of deep cryogenic treatment and low-temperature aging on the mechanical properties of friction-stir-welded joints of 2024-T351 aluminum alloy[J]. Materials Science Engineering A, 2014, 609(27):147-153.
[9] Konkova T, Mironov S, Korznikov A, et al. Microstructural response of pure copper to cryogenic rolling[J]. Acta Materialia, 2010, 58(16):5262-5273.
[10] Rangaraju N, Raghuram T, Krishna B V, et al. Effect of cryo-rolling and annealing on microstructure and properties of commercially pure aluminum[J]. Materials Science and Engineering A, 2005, 398(1):246-251.
[11] Novelli M, Fundenberger J J, Bocher P, et al. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature[J]. Applied Surface Science, 2016, 389:1169-1174.
[12] Ye C, Suslov S, Lin D, et al. Cryogenic ultrahigh strain rate deformation induced hybrid nanotwinned microstructure for high strength and high ductility[J]. Journal of Applied Physics, 2014, 115(21):213519.
[13] Ye C, Suslov S, Lin D, et al. Microstructure and mechanical properties of copper subjected to cryogenic laser shock peening[J]. Journal of Applied Physics, 2011, 110:083504.
[14] Xu Gaofeng, Zhou Jianzhong, Meng Xiankai, et al. Propagation and dislocation development properties of laser shock waves in monocrystalline titanium under cryogenic environment[J]. Chinese J Laser, 2017, 44(6):0602005. (in Chinese)徐高峰, 周建忠, 孟宪凯, 等. 深冷环境下激光冲击波在单晶钛中的传播及位错扩展特性[J]. 中国激光, 2017, 44(6):0602005.
[15] Meng Xiankai, Zhou Jianzhong, Su Chun, et al. Effects of temperature on surface mechanical properties of 2024 aluminum alloy treated by laser peening[J]. Chinese J Laser, 2016, 43(10):1002003. (in Chinese)孟宪凯, 周建忠, 苏纯, 等. 温度对激光喷丸强化2024航空铝合金表面力学性能的影响[J]. 中国激光, 2016, 43(10):1002003.
[16] Huang Yuqi. Impact response and microstructure characteristic of 6061-T6 aluminum alloy at cryogenic temperature[D]. Taiwan:Chenggong University, 2013.(in Chinese)黄钰祺. 6061-T6铝合金在低温下之撞击特性与微观结构分析[D]. 台湾:成功大学, 2013.
[17] Liao Y, Cheng G J. Controlled precipitation by thermal engineered laser shock peening and its effect on dislocation pinning:Multiscale dislocation dynamics simulation and experiments[J]. Acta Materialia, 2013, 61(6):1957-1967.
[18] Lu Jinzhong, Luo Kaiyu, Feng Aixin, et al. Microstructure enhancement mechanism of LY2 aluminum alloy means of a single laser shock processing[J]. Chinese J Laser, 2010, 37(10):2662-2666.(in Chinese)鲁金忠, 罗开玉, 冯爱新, 等. 激光单次冲击LY2铝合金微观强化机制研究[J]. 中国激光, 2010, 37(10):2662-2666.
[19] Ren Xudong, Zhang Tian, Jiang Dawei, et al. Effects of laser shock processing and aluminizing on microstructure and properties of 12 CrMoV alloy[J]. Infrared and Laser Engineering, 2011, 40(2):241-244. (in Chinese)任旭东, 张田, 姜大伟,等. 激光冲击与渗铝复合处理对12CrMoV组织性能的影响[J]. 红外与激光工程, 2011, 40(2):241-244.
[20] Achintha M, Nowell D. Eigenstrain modellingof residual stresses generated by arraysof LSP shots[J]. Procedia Engineering, 2011, 10(7):1327-1332.