[1] Winker D M, Couch R H, Mccormick M P. An overview of LITE:NASA's lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2):164-180.
[2] Winker D M, Pelon J R, Mccormick M P. The CALIPSO mission:spaceborne lidar for observation of aerosols and clouds[C]//International Asia-Pacific Environmental Remote Sensing, Remote Sensing of the Atmosphere, Ocean, Environment, and Space. International Society for Optics and Photonics, 2003:1211-1229.
[3] Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7):1697-1704. (in Chinese)鲁先洋, 李学彬, 秦武斌, 等. 微脉冲激光雷达反演气溶胶的水平分布[J]. 光学精密工程, 2017, 25(7):1697-1704.
[4] Winker D M, Hunt W H, Mcgill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19):228-262.
[5] Min M, Wang P, Campbell J R, et al. Midlatitude cirrus cloud radiative forcing over China[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D20):898-907.
[6] Pan H, Bu L, Kumar K R, et al. A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161(7):134-142.
[7] Shan Kunling, Liu Xinbo, Bu Lingbing, et al. Joint inversion method of cirrus physical properties using both Lidar and millimeter wave radar[J]. Infrared and Laser Engineering, 2015, 44(9):2742-2746. (in Chinese)单坤玲, 刘新波, 卜令兵,等. 激光雷达和毫米波雷达的卷云微物理特性的联合反演方法[J]. 红外与激光工程, 2015, 44(9):2742-2746.
[8] Fernald F G. Analysis of atmospheric lidar observations:some comments[J]. Applied Optics, 1984, 23(5):000652.
[9] Ding Hongxing, Dai Liling, Sun Dongsong. Spatial distribution of aerosol in troposphere measured by lidar at slant range[J]. Infrared and Laser Engineering, 2010, 39(3):442-446. (in Chinese)丁红星, 戴丽莉, 孙东松. 激光雷达斜程探测的对流层气溶胶空间分布[J]. 红外与激光工程, 2010, 39(3):442-446.
[10] Omar A H, Winker D M, Kittaka C, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10):1994-2014.
[11] Shipley S T, Tracy D H, Eloranta E W, et al. A high spectral resolution lidar to measure optical scattering properties of atmospheric aerosols, Part I:Instrumentation and theory[J]. Applied Optics, 1984, 22(23):3716-3724.
[12] Grund C J, Eloranta E W. University of wisconsin high spectral resolution lidar[J]. Optical Engineering, 1991, 30(30):6-12.
[13] Liu D, Hostetler C, Miller I, et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2):1406.
[14] She C Y, Alvarez Ii R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J]. Applied Physics B, 1992, 17(7):541-543.
[15] Liu Z, Matsui I, Sugimoto N. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements[J]. Optical Engineering, 1999, 38(10):1661-1670.
[16] Silva A, Swap R, Maring H, et al. ACE 2011-2015 progress report and future outlook[D]. US:NASA, 2017.
[17] Eloranta E W, Roesler F L, Sroga J T. High Spectral Resolution Lidar[M]. Berlin:Springer, 1983:308-315.
[18] Vaughan M A, Powell K A, Kuehn R E, et al. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10):2034-2050.
[19] Jursa A S. Handbook of geophysics and the space environment[D]. Germany:Research Gate, 1985.
[20] Bodhaine B A, Wood N B, Dutton E G, et al. On Rayleigh optical depth calculations[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11):1854-1861.
[21] Cairo F, Di D G, Adriani A, et al. Comparison of various linear depolarization parameters measured by lidar[J]. Applied Optics, 1999, 38(21):4425-4432.
[22] Serdyuchenko A, Gorshelev V, Weber M, et al. New broadband high-resolution ozone absorption crosssections[J]. Spectroscopy Europe, 2011(6):confETE11S.
[23] Liu Z, Voelger P, Sugimoto N. Simulations of the observation of clouds and aerosols with the experimental lidar in space Equipment system[J]. Applied Optics, 2000, 39(18):3120-3137.
[24] Hernandez G. Analytical description of a Fabry-Perot photoelectric spectrometer[J]. Applied Optics, 1966, 5(11):1745-1748.
[25] Forkey J N, Lempert W R, Miles R B. Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths[J]. Applied Optics, 1997, 36(27):6729-6738.
[26] Esselborn M, Wirth M, Fix A, et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients[J]. Applied Optics, 2008, 47(3):346-358.
[27] Cheng Z, Liu D, Yang Y, et al. Interferometric filters for spectral discrimination in high-spectral-resolution lidar:performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer[J]. Applied Optics, 2013, 52(32):7838-7850.
[28] Hair J W, Hostetler C A, Cook A L, et al. Airborne high spectral resolution lidar for profiling aerosol optical properties[J]. Applied Optics, 2008, 47(36):6734-6752.
[29] Bu L, Pan H, Kumar K R, et al. LIDAR and millimeter-wave cloud RADAR(MWCR) techniques for joint observations of cirrus in Shouxian (32.56N, 116.78E), China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 148:64-73.