[1] Zhan P, Tan W, Si J, et al. Optical imaging of objects in turbid media using heterodyned optical Kerr gate [J]. Applied Physics Letters, 2014, 104(21): 211907. doi:  10.1063/1.4880115
[2] Mullen L J, Vieira A. Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection [J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(9): 2370-2377. doi:  10.1109/22.414591
[3] Pellen F, Intes X, Olivard P, et al. Determination of sea-water cut-off frequency response by backscattering transfer function measurement [J]. Journal of Physics D: Applied Physics, 2000, 33(4): 349-354. doi:  10.1088/0022-3727/33/4/306
[4] Pellen F, Olivard P, Guern Y, et al. Radiofrequency modulation on optical carrier for target detection enhancement in sea-water [C]//Proc SPIE Ocean Optics: Remote Sensing and Underwater Imaging, 2002, 4488: 13-24.
[5] Mullen L, Contarino V M, Herczfeld P R. Hybrid lidar-radar ocean experiment [J]. IEEE Trans Microw Theory Tech, 1996, 44(12): 2703-2703.
[6] Mullen L, Contarino V M, Herczfeld P R. Hybrid lidar-radar: seeing through the scatter [J]. IEEE Microw Mag, 2000, 1(3): 42-48. doi:  10.1109/6668.871186
[7] Mullen L, Herczfeld P R. Full scale hybrid lidar-radar system [C]//Proc IEEE Microwave Symposium Digest, 1996, 3: 1559-1662.
[8] Dominicis L D, Collibus M, Fornetti G, et al. Improving underwater imaging in an amplitude modulated laser system with radio frequency control technique [J]. Journal of the European Optical Society Rapid Publications, 2009, 5(1): 138-138.
[9] O’connor S, Mullen L J, Cochenour B. Underwater modulated pulse laser imaging system [J]. Optical Engineering, 2014, 53(5): 051403. doi:  10.1117/1.OE.53.5.051403
[10] Mullen L, Laux A, Cochenour B. Demodulation techniques for the amplitude modulated laser imager [J]. Appl Opt, 2007, 46(30): 7374-7383. doi:  10.1364/AO.46.007374
[11] Cochenour B, Mullen L, Muth J. Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging [J]. Applied Optics, 2011, 50(33): 6168-6178. doi:  10.1364/AO.50.006168
[12] Hang J, Yong M, Kun L, et al. Backscattering light model of seawater for modulated lidar based on stationarity of light field [J]. Journal of Beijing Institute of Technology, 2007, 16(4): 481-485.
[13] Yong M A, Hang J I, Liang K. Application of modulated lidar on optical carrier for ocean exploration [J]. Laser Technology, 2008, 32(4): 346-349.
[14] Mullen L. Optical propagation in the underwater environment [C]//Proceedings of SPIE, 2009, 7324: 732409.
[15] Mullen L, Laux A, Cochenour B. Propagation of modulated light in water: implications for imaging and communications systems [J]. Applied Optics, 2009, 48(14): 260712.
[16] Mullen L, Alley D, Cochenour B. Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water [J]. Applied Optics, 2011, 50(10): 1396-1404. doi:  10.1364/AO.50.001396
[17] Cochenour B, Mullen L. Channel response measurements for diffuse non-line-of-sight (NLOS) optical communication links underwater[C]//Ocean'11 MTS/IEEE Kona, 2011: 1-5.
[18] Cochenour B, Mullen L, Muth J. Temporal response of the underwater optical channel for high-bandwidth wireless laser communications [J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 730-742. doi:  10.1109/JOE.2013.2255811
[19] Lin Hong. Study on Optical Scattering Characteristics of Marine Suspended Particles [M]. Beijing: China Atomic Energy Press, 2016. (in Chinese)
[20] Alkholidi A G. Free Space Optical Communications — Theory and Practices [M]. Rijeka: InTech, 2014.
[21] Feng Shiyu, Li Fengqi, Li Shaoqing. Introduction to Marine Science [M]. Beijing: Higher Education Press, 1999. (in Chinese)
[22] Jantzi A, Jemison W, Laux A, et al. Enhanced underwater ranging using an optical vortex [J]. Optics Express, 2018, 26(3): 2668-2674. doi:  10.1364/OE.26.002668
[23] Cochenour B, Rodgers L, Laux A, et al. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM) [C]//SPIE Defense + Security. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017, 10186: 1018603.
[24] Liao Yingqi, Yang Suhui, Li Kun, et al. Numerical simulation of performance improvement of underwater lidar by using a spiral phase plate as spatial filter [J]. Photonics Journal, 2022, 14(1): 1-3.
[25] Palacios D M, Maleev I D, Marathay A S, et al. Spatial correlation singularity of a vortex field [J]. Physical Review Letters, 2004, 92(14): 143905. doi:  10.1103/PhysRevLett.92.143905
[26] Bai Yihua, Lv Haoran, Fu Xin, et al. Vortex beam: generation and detection of orbital angular momentum [Invited] [J]. Chinese Optic Letters, 2022, 20(1): 012601. doi:  10.3788/COL202220.012601
[27] Palacios D, Rozas D, Swartzlander G A. Observed scattering into a dark optical vortex core [J]. Physical Review Letters, 2002, 88(10): 103902.
[28] Foo G, Palacios D M, Swartzlander G A. Optical vortex coronagraph [J]. Optics Letters, 2005, 30(24): 3308-3310. doi:  10.1364/OL.30.003308
[29] Swartzlander G A. Peering into darkness with a vortex spatial filter [J]. Optics Letters, 2001, 26(8): 8-12.
[30] Sun W, Hu Y, Macdonnell D G, et al. Technique to separate lidar signal and sunlight [J]. Optics Express, 2016, 24(12): 12949-12954. doi:  10.1364/OE.24.012949
[31] Zhu Zhihan, Sheng Liwen, Lv Zhiwei. et al. Orbital angular momentum mode division filtering for photon-phonon coupling [J]. Sci Rep, 2017, 7: 40526. doi:  https://doi.org/10.1038/srep40526
[32] Zhong Ruyue, Zhu Zhihan, Song Shuwei, et al. Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light [J]. Physical Review A, 2021, 103(5): 053520. doi:  https://doi.org/10.1103/PhysRevA.103.053520
[33] Zhu Zhihan, Chen Peng, Li Hongwei, et al. Fragmentation of twisted light in photon–phonon nonlinear propagation [J]. Applied Physics Letters, 2018, 112(16): 161103. doi:  10.1063/1.5020082
[34] Li Jing, Ma Yong, Zhou Qiankun, et al. Monte Carlo study on pulse response of underwater optical channel [J]. Optical Engineering, 2012, 53(6): 066001.
[35] Li Kun, Yang Suhui, Wang Xin, et al. RF intensity modulated mid-IR light source based on dual-frequency optical parametric oscillation [J]. Optics Express, 2019, 27(4): 4907-4916. doi:  10.1364/OE.27.004907