[1] Lux O, Sarang S, Williams R J, et al. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection [J]. Optics Express, 2016, 24(24): 27812. doi:  10.1364/OE.24.027812
[2] Lux O, Rhee H, Fritsche H, et al. Barium nitrate Raman laser at 1.599 µm for CO2 detection[C]//Allakhverdiev K R. XIX International Symposium on High-Power Laser Systems and Applications, SPIE, 2013, 8677: 342–348.
[3] Yang X, Kitzler O, Spence D J, et al. Diamond sodium guide star laser [J]. Optics Letters, 2020, 45(7): 1898. doi:  10.1364/OL.387879
[4] Sheng Q, Li R, Lee A J, et al. A single-frequency intracavity Raman laser [J]. Optics Express, 2019, 27(6): 8540. doi:  10.1364/OE.27.008540
[5] Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers [J]. Optics Express, 2010, 18(8): 8540. doi:  10.1364/OE.18.008540
[6] Yang X, Zhang L, Cui S, et al. Sodium guide star laser pulsed at Larmor frequency [J]. Optics Letters, 2017, 42(21): 4351. doi:  10.1364/OL.42.004351
[7] Duan Y, Zhu H, Huang C, et al. Potential sodium D2 resonance radiation generated by intra-cavity SHG of a c-cut Nd: YVO4 self-Raman laser [J]. Optics Express, 2011, 19(7): 6333. doi:  10.1364/OE.19.006333
[8] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers [J]. Optics Communications, 2002, 207(1-6): 169-175. doi:  10.1016/S0030-4018(02)01524-9
[9] Wineland D J, Itano W M. Laser cooling of atoms [J]. Physical Review A, 1979, 20(4): 1521-1540. doi:  10.1103/PhysRevA.20.1521
[10] Yamamoto R, Kobayashi J, Kuno T, et al. An ytterbium quantum gas microscope with narrow-line laser cooling [J]. New Journal of Physics, 2016, 18(2): 023016. doi:  http://dx.doi.org/10.1088/1367-2630/18/2/023016
[11] Greenland P T. Laser isotope separation [J]. Contemporary Physics, 1990, 31(6): 405-424. doi:  10.1080/00107519008213790
[12] Steane A. Quantum computing [J]. Reports on Progress in Physics, 1998, 61(2): 117-173. doi:  10.1088/0034-4885/61/2/002
[13] Meng L S, Roos P A, Carlsten J L. Continuous-wave rotational Raman laser in H2 [J]. Optics Letters, 2002, 27(14): 1226-1228. doi:  10.1364/OL.27.001226
[14] Rong H, Jones R, Liu A, et al. A continuous-wave Raman silicon laser [J]. Nature, 2005, 433(7027): 725-728. doi:  10.1038/nature03346
[15] Shi J, Alam S, Ibsen M. Highly efficient Raman distributed feedback fibre lasers [J]. Optics Express, 2012, 20(5): 5082. doi:  10.1364/OE.20.005082
[16] Lee C Y, Chang C C, Tuan P H, et al. Cryogenically monolithic self-Raman lasers: Observation of single-longitudinal-mode operation [J]. Optics Letters, 2015, 40(9): 1996. doi:  10.1364/OL.40.001996
[17] Liu Z, Men S, Cong Z, et al. Single-frequency Nd: GGG/BaWO4 Raman laser emitting at 1178.3 nm[C]//Conference on Lasers and Electro-Optics, 2016: SM3 M. 3.
[18] Spuler S M, Mayor S D. Raman shifter optimized for lidar at a 1.5 μm wavelength [J]. Applied Optics, 2007, 46(15): 2990-2995. doi:  10.1364/AO.46.002990
[19] Sheng Q, Ma H, Li R, et al. Recent progress on narrow-linewidth crystalline bulk Raman lasers [J]. Results in Physics, 2020, 17: 103073. doi:  https://doi.org/10.1016/j.rinp.2020.103073
[20] Mildren R P. Intrinsic Optical Properties of Diamond[M]// Optical Engineering of Diamond. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013: 1–34.
[21] Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser & Photonics Reviews, 2015, 9(4): 405-411. doi:  10.1002/lpor.201500032
[22] Spence D J. Spatial and spectral effects in continuous-wave intracavity Raman lasers [J]. IEEE Journal on Selected Topics in Quantum Electronics, 2015, 21(1): 134-141. doi:  10.1109/JSTQE.2014.2344042
[23] Bonner G M, Lin J, Kemp A J, et al. Spectral broadening in continuous-wave intracavity Raman lasers [J]. Optics Express, 2014, 22(7): 7492-7502. doi:  10.1364/OE.22.007492
[24] Shen Y R, Bloembergen N. Theory of stimulated brillouin and raman scattering [J]. Physical Review, 1965, 137(6A): A1787. doi:  https://doi.org/10.1103/PhysRev.137.A1787
[25] Guo Y, Peng W, Su J, et al. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser [J]. Optics Express, 2020, 28(4): 5866. doi:  10.1364/OE.387392
[26] Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain [J]. Optica, 2016, 3(8): 876. doi:  10.1364/OPTICA.3.000876
[27] Sarang S, Kitzler O, Lux O, et al. Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain [J]. OSA Continuum, 2019, 2(4): 1028. doi:  10.1364/OSAC.2.001028
[28] Hänsch T W, Couillaud B. Laser frequency stabilization by polarization spectroscopy of a reference cavity [J]. Optics Communications, 1980, 35(3): 441-444. doi:  10.1016/0030-4018(80)90069-3
[29] Kitzler O, Lin J, Pask H M, et al. Single-longitudinal-mode ring diamond Raman laser [J]. Optics Letters, 2017, 42(7): 1229. doi:  10.1364/OL.42.001229
[30] Cao Xuechen, Wei Jiao, Jin Pixian, et al. Cavity resonance-enhanced watt-level single frequency 1240 nm Raman laser [J]. Chinese Journal of Lasers, 2021, 48(5): 0501011. (in Chinese) doi:  10.3788/CJL202148.0501011
[31] Li M, Kitzler O, Spence D J. Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser [J]. Optics Express, 2020, 28(2): 1738. doi:  10.1364/OE.380644
[32] Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation [J]. Optics Letters, 1997, 22(6): 375. doi:  10.1364/OL.22.000375
[33] Yang X, Kitzler O, Spence D J, et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain [J]. Optics Letters, 2019, 44(4): 839. doi:  10.1364/OL.44.000839
[34] Yang X, Bai Z, Chen D, et al. Widely-tunable single-frequency diamond Raman laser [J]. Optics Express, 2021, 29(18): 29449. doi:  10.1364/OE.435023
[35] Lu H, Su J, Zheng Y, et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers [J]. Optics Letters, 2014, 39(5): 1117. doi:  10.1364/OL.39.001117
[36] Casula R, Penttinen J-P, Kemp A J, et al. 1.4 µm continuous-wave diamond Raman laser [J]. Optics Express, 2017, 25(25): 31377-31383. doi:  10.1364/OE.25.031377
[37] Liu Z, Men S, Cong Z, et al. A pulsed single-frequency Nd: GGG/BaWO4 Raman laser [J]. Laser Physics, 2018, 28(4): 045002. doi:  10.1088/1555-6611/aaa334
[38] Zhang X L, Li L, Cui J H, et al. Single longitudinal mode and continuously tunable frequency Tm, Ho: YLF laser with two solid etalons [J]. Laser Physics Letters, 2010, 7(3): 194-197. doi:  10.1002/lapl.200910120
[39] Zverev P G. The influence of temperature on Raman modes in YVO4 and GdVO4 crystals [J]. Journal of Physics: Conference Series, 2007, 92(1): 012073. doi:  http://dx.doi.org/10.1088/1742-6596/92/1/012073
[40] Liu M S, Bursill L A, Prawer S, et al. Temperature dependence of the first-order Raman phonon line of diamond [J]. Physical Review B-Condensed Matter and Materials Physics, 2000, 61(5): 3391-3395. doi:  10.1103/PhysRevB.61.3391
[41] Granados E, Chrysalidis K, Fedosseev V N, et al. Monolithically integrated widely tunable single-frequency diamond Raman lasers[C]//Advanced Solid State Lasers, 2021: 3–4.