[1] Molaei M, Karimipour M, Abbasi S, et al. PbS and PbS/CdS quantum dots: Synthesized by photochemical approach, structural, linear and nonlinear response properties, and optical limiting [J]. Journal of Materials Research, 2020, 35(4): 401-409. doi:  10.1557/jmr.2020.17
[2] Zhu X, Ge Y, Li J, et al. Research progress of quantum dot enhanced silicon-based photodetectors [J]. Chinese Optics, 2020, 13(1): 62-74. (in Chinese) doi:  10.3788/co.20201301.0062
[3] Yin X, Zhan C, Guo Y, et al. PbS QD-based photodetectors: future-oriented near-infrared detection technology [J]. Journal of Materials Chemistry C, 2021, 9(2): 417-438. doi:  10.1039/D0TC04612D
[4] Ye Y, Yu J, Lin S, et al. Progress of quantum dot backlight technology [J]. Chinese Optics, 2020, 13(1): 14-27. (in Chinese) doi:  10.3788/co.20201301.0014
[5] Manis-Levy H, Shikler R, Golan Y, et al. High photoconductive gain in a GaAs/Pbs heterojunction based SWIR detector [J]. Applied Physics Letters, 2020, 117(8): 081107. doi:  10.1063/5.0018219
[6] Geng R, Zhao K, Chen Q. Long-distance recognition of infrared quantum dot materials [J]. Infrared and Laser Engineering, 2021, 50(7): 20200436. (in Chinese) doi:  10.3788/IRLA20200436
[7] Yin C, Zhou J, Liu Y, et al. Research progress of surface acoustic wave ultraviolet detectors [J]. Optics and Precision Engineering, 2020, 28(7): 1433-1445. (in Chinese) doi:  10.37188/OPE.20202807.1433
[8] Yu X, Zhao J. Research progress of pixel-level integrated devices for spectral imaging [J]. Optics and Precision Engineering, 2019, 27(5): 999-1012. (in Chinese) doi:  10.3788/OPE.20192705.0999
[9] Zhang C, Mu T, Yan T, et al. Overview of hyperspectral remote sensing technology [J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 104-114. (in Chinese)
[10] Fu D, Man Y, Li Y, et al. The opportunities and challenges in optical payload of micro-nano satellite [J]. Spacecraft Recovery & Remote Sensing, 2018, 39(4): 64-69. (in Chinese)
[11] Yu G, Jin L, Zhou F, et al. A review on development of segmented planar imaging detector for electro-optical reconnaissance system [J]. Spacecraft Recovery & Remote Sensing, 2018, 39(5): 1-9. (in Chinese)
[12] Yu L, Tang L, Yang W, et al. Research progress of uncooled infrared detectors [J]. Infrared and Laser Engineering, 2021, 50(1): 20211013. (in Chinese) doi:  10.3788/IRLA20211013
[13] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor [J]. Nature Communications, 2016, 7(1): 1-8.
[14] Pal B N, Robel I, Mohite A, et al. High-sensitivity p-n junction photodiodes based on PbS nanocrystal quantum dots [J]. Advanced Functional Materials, 2012, 22(8): 1741-1748. doi:  10.1002/adfm.201102532
[15] Dong R, Bi C, Dong Q, et al. An ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain [J]. Advanced Optical Materials, 2014, 2(6): 549-554. doi:  10.1002/adom.201400023
[16] Wei Y, Ren Z, Zhang A, et al. Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity [J]. Advanced Functional Materials, 2018, 28(11): 1706690. doi:  10.1002/adfm.201706690
[17] Xu K, Xiao X, Zhou W, et al. Inverted Si: PbS colloidal quantum dots heterojunction based infrared photodetector [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15414-15421.
[18] Brichkin S B, Gak V Y, Spirin M G, et al. Study of electrophotophysical characteristics of IR photodetectors based on PbS colloidal quantum dots [J]. High Energy Chemistry, 2020, 54(1): 36-45. doi:  10.1134/S0018143920010038
[19] Xiao X, Xu K, Yin M, et al. High quality silicon: colloidal quantum dot heterojunction based infrared photodetector [J]. Applied Physics Letters, 2020, 116(10): 101102. doi:  10.1063/1.5140255
[20] Wang X, Xu K, Yan X, et al. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors [J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8403-8410.