[1] Tran M A, Zhang C, Morin T J, et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths [J]. Nature, 2022, 610: 54-60. doi:  10.1038/s41586-022-05119-9
[2] 李明, 郝腾飞, 潘时龙, 等. 微波光子集成及前沿展望(特邀)[J]. 红外与激光工程, 2021, 50(07): 32-45. doi:  10.3788/IRLA20211048

Li Ming, Hao Tengfei, Pan Shilong, et al. Frontiers and prospects of integrated microwave photonics (Invited) [J]. Infrared and Laser Engineering, 2021, 50(7): 20211048. (in Chinese) doi:  10.3788/IRLA20211048
[3] 陈宏伟, 杜振民, 符庭钊, 等. 硅基光子集成宽带大色散延时芯片(特邀)[J]. 红外与激光工程, 2021, 50(07): 19-23. doi:  10.3788/IRLA20211045

Chen Hongwei, Du Zhenmin, Fu Tingzhao, et al. Wideband large dispersion group delay chip based on silicon photonics integration (Invited) [J]. Infrared and Laser Engineering, 2021, 50(7): 20211045. (in Chinese) doi:  10.3788/IRLA20211045
[4] Xue X, Tang J, Zhou H, et al. All-polymer monolithic resonant integrated optical gyroscope [J]. Optics Express, 2022, 30: 42728-42737. doi:  10.1364/OE.474447
[5] Nejadriahi H, Friedman A, Sharma R, et al. Thermo-optic properties of silicon-rich silicon nitride for on-chip applications [J]. Optics Express, 2020, 28: 24951-24960. doi:  10.1364/OE.396969
[6] Stern B, Kim K, Gariah H, et al. Athermal silicon photonic wavemeter for broadband and high-accuracy wavelength measurements [J]. Optics Express, 2021, 29: 29946-29959. doi:  10.1364/OE.432588
[7] Zhang X, Zhang T, Hu A, et al. Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides [J]. Journal of Nanoscience and Nanotechnology, 2011, 11(12): 10520-10524. doi:  10.1166/jnn.2011.4094
[8] Yang Z, Wang Z, Zhang R, et al. Athermal chalcogenide microresonator cladded with polymer [J]. IEEE Photonics Journal, 2022, 14(5): 1-5. doi:  10.1109/JPHOT.2022.3203731
[9] He L, Guo Y, Han Z, et al. Broadband athermal waveguides and resonators for datacom and telecom applications [J]. Photonics Research, 2018, 6: 987-990. doi:  10.1364/PRJ.6.000987
[10] Tao S, Huang Q, Zhu L, et al. Athermal 4-channel (de-) multiplexer in silicon nitride fabricated at low temperature [J]. Photonics Research, 2018, 6: 686-691. doi:  10.1364/PRJ.6.000686
[11] Tang L, Li Y, Li J, et al. Temperature-insensitive Mach–Zehnder interferometer based on a silicon nitride waveguide platform [J]. Optics Letters, 2020, 45: 2780-2783. doi:  10.1364/OL.394143
[12] Guillén-Torres M, Almarghalani M, Sarraf E, et al. Silicon photonics characterization platform for gyroscopic devices[C]//Proc of SPIE, Photonics North, 2014, 9288: 92880U.
[13] Aguiar D, Annoni A, Peserico N, et al. Automated tuning, control and stabilization of photonic integrated circuits[C]//Proc of SPIE, Integrated Optics: Physics and Simulations III, 2017, 10242: 1024208.
[14] Berini P, de Leon I. Surface plasmon-polariton amplifiers and lasers [J]. Nature Photonics, 2012, 6: 16-24. doi:  10.1038/nphoton.2011.285
[15] Qian G, Fu X, Zhang L, et al. Hybrid fiber resonator employing LRSPP waveguide coupler for gyroscope [J]. Scientific Reports, 2017, 7: 41146. doi:  10.1038/srep41146
[16] Su Y, Zhang Y, Qiu C, et al. Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications [J]. Advanced Materials Technologies, 2020, 5: 1901153. doi:  10.1002/admt.201901153
[17] Zhang L, Hong S, Wang Y, et al. Ultralow-loss silicon photonics beyond the singlemode regime [J]. Laser & Photonics Reviews, 2022, 16: 2100292. doi:  10.1002/lpor.202100292
[18] Butt M, Tyszkiewicz C, Karasiński P, et al. Optical thin films fabrication techniques—Towards a low-cost solution for the integrated photonic platform: A review of the current status [J]. Materials, 2022, 15: 4591. doi:  10.3390/ma15134591
[19] Bauters J, Heck M J R, Dai D, et al. Ultralow-loss planar Si3N4 waveguide polarizers [J]. IEEE Photonics Journal, 2013, 5(1): 6600207. doi:  10.1109/JPHOT.2012.2234095